
Elastic Compression of Spheres and Cylinders

at Point and Line Contact

By M. J. Puttock and E. G. Thwaite

National Standards Laboratory Technical Paper No. 25

Commonwealth Scientific and Industrial

Research Organization, Australia

Melbourne 1969



Printed by CSIRO, Melbourne



CONTENTS

Summary 5
Symbols 6

Part 1. COMPRESSION FORMULAE

3

Case 1.
2.
3.
4.

5.

6.

7.

8.

9.
10.
11.

12.

13.

14.

15.

16.

Two spheres in contact
Sphere in contact with a plane
Sphere between two parallel planes
Sphere in contact with an internal
spherical surface
Equal diameter cylinders crossed with
their axes at right angles
Unequal diameter cylinders crossed
with their axes at right angles
Unequal diameter cylinders crossed
with their axes at any angle
Two cylinders in contact with axes
parallel
Cylinder in contact with a plane
Cylinder between two parallel planes
Sphere in contact with a cylinder
(external)
Sphere in contact with a cylinder
(internal)
Sphere in contact with a symmetrical
cylindrical vee groove
Sphere in contact with an asymmetrical
cylindrical vee groove
Cylinder in contact with an asymmetrical
cylindrical vee groove
Cylinder in contact with a symmetrical
cylindrical vee groove

7
8
9

10

11

12

13

14
15
16

17

18

19

20

22

24

Part 2. THEORY

I. Introduction

II. General Theory
(a) General
(b) Geometry of the unstressed surface

in the region of contact
(c) Equations for area of contact,

pressure distribution and compression

III. Special Cases
(a) Two spheres in contact
(b) Sphere in contact with a plane
(c) Sphere in contact with an

internal sphere
(d) Equal cylinders crossed at

right angles

25

26

26

33

37
38

38

39



4

(e) Unequal cylinders crossed at
right angles

(f) Unequal diameter cylinders crossed
with their axes at any angle

(g) Sphere on a cylinder
(h) Sphere inside a cylinder
(i) Cylinders in contact along a line

parallel to their axes and a cylinder
on a plane

IV. References

39

43
43
44

45

49

Appendix I.

Appendix II.

Tables of elastic constants and
derived quantities

Values of elliptic integral K, the
· 1 dE d i··quant1ty - e de an eccentr c1t1es

for arguments AlB

51

56



ELASTIC COMPRESSION OF SPHERES AND CYLINDERS
AT POINT AND LINE CONTACT

By M.J. Puttock* and E.G. Thwaite*

Summary

The purpose of this paper is primarily to present
in a convenient form the formulae and data for the
calculation of the compression effects which occur in
the measurement and use of spheres and cylinders in
dimensional metrology.

Only Hertzian compression effects are considered
in the present paper and these assume that the
surfaces in contact are perfectly smooth, that the
elastic limits of the materials are not exceeded,
that the materials are homogeneous, and that there
are no frictional forces within the contact area.
These conditions are closely met with materials and
applied forces normally encountered in precise
dimensional metrology, and with the surfaces finely
lapped.

In the case of surfaces that are not finely lapped
the actual compression effects may differ by up to
10% from those calculated using the formulae in this
paper. Contributory factors include frictional
forces and microstructure variations in the surface
leading to variations in elastic modulii. Berndt
(1928) has derived modified formulae to take into
account frictional forces arising from non-smooth
surfaces and these formulae, in general, lead to
compression effects differing from those in this
paper by approximately 5%.

It is considered that the formulae given in this
paper are sufficiently precise for all practical
purposes in precise dimensional metrology.

This paper is in two parts. Part 1 is a series of
data sheets giving the appropriate formulae for
various specific cases, together with appropriate
tables and graphs. Part 2 gives the mathematical
derivation of the formulae in a consistent notation
and is primarily intended for students with an
interest in the subject.

Where the formulae have been partially evaluated
for steel the elastic constants used have been those
for 1% carbon steel.

*Division of Applied Physics, National Standards Laboratory, CSIRO,
University Grounds, Chippendale, N.S.W. 2008.

5



6

SYMBOLS

Units

the total elastic compression at the point

or line of contact of two bodies, measured

along the line of the applied force

mm in

D diameter of body

P total applied force

E Young's modulus of material of body

modulus of rigidity of material of body

gf lbf

mm in

gf/mm2 lbf/in2

gf/mm2 Ibf/in2

mm2 /gf in 2
/ Ibf

mm 2 /gf in 2 /1bf

E/2G - 1Poisson's ratio

(1 - 0
2

) /rrE

34 (VI + V2 ) for bodies of different

materials

v

a

G

Q

32 V for bodies of the same material

e eccentricity of ellipse of contact

(1 - b2 /a 2 )1/2

K and E* are the complete elliptic integrals of

the first .and second class respectively

with modulus e

*Not to be confused with E, the Young's modulus.



Case 1.

PART 1

COMPRESSION FORMULAE

Two Spheres in Contact

7

p p

The suffixes 1 and 2 relate to spheres 1 and 2 respectively.

General Case

(3TI)2/3 / / 1 1 /
(), = -2- · p2 3 • ( VI + V2) 2 3 • (_ + _) 1 3.

D1 D2

Spheres of Same Material

Spheres Both of Steel

Metric Units: P in gf, D in mm

mm.

Inch Units: P in Ibf, D in inch

(), = 0.000 016 . p2/3 • (l- + l-)1/3 inch.
VI D2
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Case 2. Sphere in Contact with a Plane

General Case

(3-rr) 2/3 / / 1 /a = 2 II • p2 3 • (V 1 + V2) 2 3 • (/5) 1 3.

Sphere and Plane of Same Material

Sphere and Plane Both of Steel

Metric Units: p in gf, D in nun

a = 0.000 020 p2/3 (!.) 1/3 mm.
D

Inch Units: P in lbf, D in inch

a = 0.000 016 p2/3 (2:.)1/3 inch.
D



Case 3. SEhere Between Two Parallel Planes

p

9

Total compression aT = aa + ab where aa and ab are calculated as
in Case 2.

If the two planes are of the same material then

and the total compression may be written as

2a.

Sphere and Planes All of Steel

Metpio Units: P in gf, D in mm

aT 0.000 040 p2/3 (2:.) 1/3 mm.
D

Inch Units: P in lbf, D in inch

aT 0.000 032 p2/3 (l) 1 /3 inch.D
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Case 4. Sphere in Contact with an Internal Spherical Surface

p

Let diameter of internal spherical surface = D1 ,

diameter of smaller sphere = D2

General Case

(3n)2/3 / / 1 1 /a. =:: -2-- . p2 3 • (VI + V
2

) 2 3 • ( ) 1 3
D2 VI •

Spheres of Same Material

a =

Spheres Both of Steel

Metria Units: P in gf, D in mm

Inch Units: P in lbf, D in inch

a = 0.000 016 • p 2
/

3 • (!- - 1-)1/3 inch.
D2 VI
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Case 5. Equal Diameter Cylinders Crossed with Their Axes at Right
Angles

~----t,---~
......",;.------+,...--...--~

+

General Case

( 3TI)2/3 / / 1 /
Q, = -2-- · p2 3 • ( VI + V2 ) 2 3 • (Jj) 1 3.

Cylinders Both of Same Material

Cylinders Both of Steel

Met'Pia Units: P in gf, D in mm

ex. = 0.000 020 p2/3 (!.) 1/3 mm.
D

Inch Units: P in Ibf, D in inch

ex = 0.000 016 p2/3 (!')1/3 inch.D
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Cas~ 6. Unequal Diameter Cylinders Crossed with Their Axes at Right
Angles

p
Cylinder 2

Cylinder 1

and

where

The suffix 1 refers to the larger diameter cylinder, the suffix 2
to the smaller.

General Case
1/3

a = 2K. (P • Q) 2/3 • ( 1 1 dE] ,
2D1 • (- e de)

1 dE A D2
Kand - e de are functions of B = ~ '

Q = t (V1 + V2 ) for dissimilar materials,

Q = t V when cylinders are of the same material,

A D2
For any given value of 13 =D in the range 1.00 to 0.000 000 1

1 1 dE
the corresponding values of K and - e de may be obtained from Tables 3-6

or Figure 6.

Both Cylinders of Steel

Metric Units: P in gf, D in mm

1/3

a = 0.000 015 . K . p2/3 • ( 1 1 dE ] mm.
2D1 • (- e de)

Inch Units: P in lbf, D in inch

1/3

a = 0.000 012 . K . p
2

/
3

• ( 1 1 dE ] inch.
2D1 • (- e de)



Case 7. Unequal Diameter Cylinders Crossed with Their Axes at Any
Angle

13

Cylinder 1 Cylinder 2

The suffix 1 refers to the larger diameter cylinder, the suffix 2
to the smaller.

Let the axes be inclined at an acute angle e to one another.
It is first necessary to obtain the ratio A/B by solving the

following equations, for A and B.

A+B=L+LD
1

D
2

~

{A _ B)2 = (L)2 + (L.)2 + 2 cos 28
VI D2 D1V2

1 dEFrom the calculated value of A/B the values of K and - e de may
be obtained from Tables 3-6 or Figure 6.

General Case
1/3

a = 2K • (P • Q) 2/3 • ( A 1 dE) ,
2 • (- e de)

where

and

3Q = 4 (VI + V2 ) for dissimilar materials

Q = t V when cylinders are of the same material.

Both Cylinders of Steel

Metnc Units: P in gf, D in mm

a = 0.000 015 • K · p2/a • (2

1/3

A 1 dE ) mm.
(- --)e de

Inch Units: P in lbf, D in inch

1/3

a = 0.000 012 . K . p2
/

3
• ( A 1 dE ] inch.

2 • (- e de)
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Case 8. Two Cylinders in Contact with Axes Parallel

_ ......... --r-JE.----t
~~__a.

i2a

Cylinder 2

Cylinder 1

General Case

Same Materials

a = 2P . V • G+ In { 4a
2

_ • (L + L)}~.LV. P D1 D2 ~

Both Diameters Equal

• D~'
Same Materials

P = P/2a = force per unit length.
In = natural logarithm.
2a = length of contact.



Case 9. Cylinder in Contact with a Plane

15

f ; Cylinder t-
V,@/~W/~
~2a~

Cylinder

General Case

Same Materials

P = Pl2a = force per unit length.
In = natural logarithm.
2a = length of contact.
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Case 10. Cylinder Between Two

r-2a~

(a) (b)

Planes

(c)

The calculations are as for Case 9.
If the lengths of the lines of contact are the same (as in (a)

and (b)), and the material of the two planes is also the same, then
the total compression is twice the compression for a single contact,
i.e.

2a.

If the lengths of the lines of contact are not equal (such as in
(0)), or the materials of the two planes are different, then the
compressions at each contact must be calculated independently, i.e.



Case 11. Sphere in Contact with a Cylinder (External)

p

17

Sphere

Cylinder

Let diameter of sphere DI
and diameter of cylinder Dz

First obtain the ratio AlB and the value of 11A from the following
equations:

1
A n;
B = 1 l'-+­D

I
. D

z

From the calculated value of AlB, obtain the appropriate values

of Kand - 1 ddE from Tables 3-6 or Figure 6.e e
Calculate a from the following equation

1 dE- e de ·

Then calculate the compression a from the equation

r\I = 2QP K
u. .,a

where 3Q = 4 (VI + V2 ) for dissimilar materials,

Q = } V for similar materials.
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Case 12. Sphere in Contact with a Cylinder (Internal)

Let diameter of sphere DI
and diameter of cylinder D2

First obtain the ratio AlB and the value of 11A from the following
equations:

1 1
---

A DI D2

13 = 1

F;
1 1
if = -1---1-

F; - D
2

From the calculated value of AlB obtain the appropriate values

of K and - 1 ddE from Tables 3-6 or Figure 6.e e
Calculate a from the following equation

2QP
A

1 dE
- e de ·

Then calculate the compression a from the equation:

2QP
a. = -- • K,a

where 3
Q = 4 (Vi + V2 ) for dissimilar materials,

Q = 1 V for similar materials.
2



Case 13.
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Sphere in Contact with a Cylindrical Vee Groove, the Vee
Groove Being Symmetrical with Respect to a Nonnal to the
Axis of the Cylinder

Sphere
Vee - groove cylinder ex

Let diameter of sphere = D,
diameter of cylinder at point of contact DE'
semi-angle of vee groove = 8.

(1) Calculate the value of AlB from

1
A D
Jj=l+ 1

D DE cosec e

(2)

(3)

1 dE
Obtain appropriate values of Kand - e de from Tables 3-6 or
Figure 6.

Calculate a from the equation

1 dE
QP cosec e · D • - e de ·

(4) Calculate the total compression a normal to the axis of the
cylinder from the equation

QP cosec 2 ea = . K,a

where

and

3Q = 4 (V1 + V2 ) for dissimilar materials,

3Q = 2 V for sphere and cylindrical vee groove of the same
material.
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Case 14. Sphere in Contact with a Cylindrical Vee Groove, the Vee
Groove Being ASymmetrical with Respect to a Normal to the
Axis of the Cylinder

Vee -groove

Axis of

cylinder

Let diameter of sphere = D,
angles vee groove flanks make with normal to vee cylinder
axis = 81 and 82 ,

diameters of vee cylinder at points of contact = DEI and
DE2 respectively.

Initially each contact point must be treated separately.

(1) Calculate the values of AlB from equations:

1
D

1
D

(2)

(3)

1 dEObtain appropriate values of K and - e de for each case from
Tables 3-6 or Figure 6.

Calculate relevant values of a from the equations:

a 3 2Q • P • D (1 dE)
2 tan 8 1 cos 82 + sin e2· - e de 2·

(4) Calculate the relevant compressions normal to the vee groove
flanks from the equations:
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2QP
a1(tan 82 cos 81 + sin 61) · K1

and

2QP
( ) · K2a2 tan e1 cos e2 + sin e2 '

where 3Q =4 (VI + V2) for dissimilar materials,

3Q = 2 V where both sphere and cylindrical vee groove are
of the same material.

(5) Calculate total compression effect a normal to vee cylinder axis
from the equation
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Case 15. Cylinder in Contact with a Cylindrical Vee Groove, the
Vee Groove Being Asymmetrical with Respect to a Normal
to the Vee Cylinder

Vee -groove

Axis of
---......--..-t --+7~- 7'-+--7t---+-.,- ~~--r- ;---,........,......~.-..- """"'----

cylinder

Let diameter of cylinder = D,
angles vee groove flanks make with normal to vee cylinder
axis = 81 and 62'
diameters of vee cylinder at points of contact = DEI and
DE2 respectively.

Initially each contact must be treated separately.

(1) Calculate values of AlB from the equations:

D D

(2)

(3)

1 dE
Obtain appropriate values of Kand - e de for each case from
Tables 3-6 or Figure 6.

Calculate relevant values of a from the equations:

2QPDE1 cosec 81 1 dE
at tan 8 2 cos 8 1 + sin 8 1 • (- e de) l'

2QPD
E2

cosec 8
2

a 3 = ---------
2 tan e1 cos 82 + sin 82

(4) Calculate the relevant compressions normal to the vee groove
from the equations:



where

0. 1
2QP

K1 'a 1 (tan e2 cos e1 + sin e1)

0. 2
2QP

K2'a2 (tan 8 I cos 82 + sin 82 )

3Q = 4 (VI + V2 ) for dissimilar materials,

23

3
Q = 2 V for both cylinders of same material.

(5) Calculate total compression effect a normal to vee cylinder axis
from the equation

Note: In the above, the assumption has been made that both DEI cosec 8 1
and DE2 cosec 82 are greater than D; this is so in all practical
cases.
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Case 16. Cylinder in Contact with a Cylindrical Vee Groove, the Vee
Groove Being Symmetrical with Respect to a Normal to the
Axis of the Vee Cylinder

Vee -groove
P+---o~--------t,/ t.X

Axis of

cylinder

(1)

(2)

Let diameter of cylinder; D,
diameter of grooved cylinder at point of contact DE'
semi-angle of vee groove = 8.

A D
Calculate the value of AlB from B = D e and obtain appropriate

1 dE E cosec
values of K and - ---d from Tables 3-6 or Figure 6.e e

Calculate a from the equation

where Q

(3) Calculate total compression a normal to axis of vee grooved
cylinder from the equation

QP cosec 2 ea = . K,a

34 (VI + V2 ) for dissimilar materials,

Q ~ V where both cylinders are of the same material.

Note: In the above the assumption has been made that DE cosec 8 is
greater than D; this is so in all practical cases.
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PART 2

THEORY

I. INTRODUCTION

The mathematical theory for the general three-dimensional contact
problem was first given by Hertz (1881). There is an extensive
literature dealing with the contact problem and a review of the
Hertzian theory which in~ludes both stress and strain analysis together
with a comprehensive bibliography has been published by Lubkin (1962).
Among the works of particular interest are those of A.E.H. Love (1892),
Prescott (1924), Landau and Lifshitz (1959), Shtaerman (1949), and
Lur'e (1964). The work of Shtaerman is a complete treatise on the
contact problem.

The following derivations are given in a consistent notation and
are sufficiently detailed to be readily followed by students. The
theory stems from the general body of elasticity theory dealing with
the relation of the displacement at a point on a plane surface due to
a pressure at another point. This is the approach given in the
classical work of A.E.H. Love (1892) and adopted in a large part of
the literature and would seem to be the appropriate treatment for this
work.

The two-dimensional line contact problem is in general more
difficult theoretically than the three-dimensional one and it is not
possible to derive an explicit relation for the two-dimensional case
in a direct manner from the three-dimensional. The derivation for the
two-dimensional problem, cylinders in contact with their axes parallel,
given here has its roots in works by Thomas and Hoersch (1930), Prescott
(1924) and E.R. Love (1942). The derivation is to a degree a parallel
argument to the three-dimensional case and thus preserves a unity in
the theory.

The usefulness of compression formulae depends, of course, on
their experimental verification and, while for large forces there is
a large body of information available, for forces in the range used
in length metrology the data are not so extensive. Reference can be
made, however, to the work of Rolt and Grant (1921), Perard and Maudet
(1927), Berndt (1928), Poole (1962), and to brief information in the
National Physical Laboratory (Teddington) Annual Reports for 1921 and
1923. Verification in the two-dimensional case, like its theory,
presents particular problems, which are mainly due to the high degree
of geometric perfection required in the apparatus. Measurements with
a resolution of the order 0.003 ~m of the compression of a roller on
a flat, for the load range 0.05 to 0.4 kgf/mm, recently made at the
National Standards Laboratory, Australia, agree within practical limits
with the formulae given here for the two-dimensional case.*

*"A Precise Determination of the Compression of a Cylinder in Contact
with a Flat Surface" to be published in Journal of Scientific
Instruments (Journal of Physics E) 1969 Series 2 Volume 2.
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II. GENERAL THEORY

(a) General

The assumption is made that the surfaces in contact are perfectly
smooth, that the bodies are isotropic and linearly elastic, that the
elastic limits of the material are not exceeded, and that there are no
frictional forces in action. The finite force keeping them together
will then be distributed over the common area of contact. For our
purpose, the surfaces of bodies in contact may be assumed to be of the
second degree, and the following theory is based on this assumption.

(b) Geometry of the Unstressed Surface in the Region of Contaot

Suppose that two bodies are in mathematical contact (i.e,. unstressed
and undeformed) so that the common normal is parallel to the applied
force; the common tangent plane is the plane xy and the common normal
is the axis z (see Fig. 1).

Applied

t force

zl

x,.--,-------=::=........IIIII!5:==------~x

y - y is normal

to plane of figure

o

Z2

t Applied
force

Fig. 1

The general equation for a surface of the second degree is

a;c2 + by 2 + cz 2 + 2fyz + 2gzx + 2Jzxy + 2ux + 2vy + 2wz + d o. (1)

At the orlg1u, x = 0, y = 0, Z = O. Therefore d
equation (1) with respect to x,

O. Differentiating

2ax + 2az ~~ + 2fy ~~ + 2gz + 2gx ~~ + 2hy + 2u + 2w ~~ = o. (2)

Again, at the origin, x
Therefore u = o.

0, y dZ
0, Z = 0, ax = 0 (tangent plane).
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Similarly, by differenttating with respect to y it can be shown
that V = 0.

The precise equation can therefore be written as

ax 2 + by 2 + cz 2 + 2fyz + 2gzx + 2hxy + 2wz 0. (3)

To obtain an approximation to this equation which will be adequate
for our purpose, we make use of Taylor's series, namely,

f[ (x + ox), (y + 8y)]

+ 21,f6x2 3
2f +·t dX

+ higher order

f (x,y) + cSx li + oy li
dX 'dy

28x8y~ + 8y 2 ~I
dXdY dY~

terms (neglected). (4)

Differentiating equation (2) again with respect to x,

(5)

Again, at the orlg1n, x
in equation (5), this gives:

0, y 0, Z
dZ

0, dX = 0 and, substituting

dZ 2

2a + 2w -- = 0,
dX 2

a
w

Similarly, if we differentiate equation (1) twice with respect
to y,
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Differentiating equation (2) with respect to y,

(6)

At the origin, x = 0, y ; 0, Z
substituting in equation (6),

0, dZ/ay = 0, and dZ/dX ~ 0 and

Substituting now in Taylor's series, equation (4), and regarding
Z as f(x,y) ,

f[ (x + ox), (y + oy») = z f(O,O) + x ~: + y ~;

+ ~! E:~:z + 2a;~:Z + y ~:~,

hence

and may then be written as

( 7)

If z is constant (i.e. in any given plane parallel to the xy plane),
equation (7) is an ellipse with its principal axes fotated with respect
to the coordinate axes (see Fig. 2). If now the coordinate axes are
aligned with the principal axes the xy term will vanish.

To do this, make the transformation:

x = X cos e - Y sin e ,

y = X sin e + Y cos e ,

where the angle e is given by tan 28 = 2H/ (E - F).
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x

____-..o/............_, y

/ ..........

I ..............
1/ ....... Y

I
/

I

Substituting in equation (7):

Fig. 2

z = E(X cos 8 - Y sin 8)2 + F(X sinS + Y cos 8)2

+ 2H(X cos e - Y sine) x (X sin e + Y case)

= X2 (E cos 2 e + F sin2 e + 2H cos e sin8)

+ y 2 (E sin2 a + F cos 2 e - 2H cos 8 sinS)

+ XY(- 2E sin e cos e + 2F sin e cos 8

+ 28 coa 2 S - 2H sin2 e)

Constant x X2 + Constant x y2

+ XY(-(E - F) sin 28 + 28 cos 28),

When tan 28 = 2H/(E - F), the xy term vanishes and the equation
with respect to the new coordinate axes is

z = Constant x X2 + Constant x y2,

Radius R1' (in y,z plane)

o

(8)

Fig. 3
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It is now necessary to determine these constants in equation (8) in
terms of a dimension or dimensions of the respective bodies.

Let R1 and R~ be the principle radii of curvature of one of the
bodies (see Fig. 3); writing equation (8) in the form

z = Ax 2 + By2. (9)

Then, in the plane y = 0, we have Ax2 = z. Assuming circular curvature
in the plane y = 0, which is permissible in view of the magnitude of z,
then,

Ignoring the second-order term of the small quantity z,

x2

Z = 2R •
1

Since also

Similarly,

A

B

1
2R 1 •

1
2R' •1

We can, the.refore, now write the equations for the two bodies by
substituting in equation (9):

(10)

and

(11)

VI' V~ and D2 , D~ being twice the principal radii of curvature of the
two bodies respectively.
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To obtain the compression effect between the two bodies, i.e.
their mutual approach under an applied force, it is necessary to
transform the coordinate axes of the two bodies (which so far have
been treated as independent) to a single coordinate system with
different signs for the z-axes and then combine equations (10) and
(11) •

Let the new common coordinate axes (normal to the z-axes) be
(X,Y) , making angles 81 and 62 with the independent axes Xl and x

2
respectively, such that 61 + 82 = w (see Fig. 4).

y

w
------~---+---+-x

Fig. 4

Then the transformation of coordinates is given by the equations:

Xl X cos (31 y sin S1,

Y1 X sin Sl + y cos (31 '

x 2 X cos f3 2 + y sin (32'

Y2 -X sin 82 + y cos 82 •

Substituting in equations (10) and (11) we now have, in the
coordinate system (X ,y),

Z1 A1 (X cosS l - Y 8in(31)2 + B 1 (X sinSI + Y COSSl)2, (12)

Z2 A2 (X cos!32 + Y sin(2)2 + B 2 (-X sinS2 + Y cos(2)2.(13)

These two equations may be combined with a single equation, as all
these coordinate systems (X 1Yl)' (X 2Y2) , and (XY) have a common z-axis
but with different signs. Adding equations (12) and (13) and expanding
the bracket terms gives
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2
1

+ 2 2 = X2 (A
1

COS
2S

1
+ A2 COS

2S2 + B
1

sin2S1 + B2 sin2( 2)

+ 2XY( -AI COS 81 sin (31 + B 1 sin S1 cos (31 + A2 cos 82 sin 82

- B2 sin 82 cas ( 2 )

+ y2(A 1 sin2 S1 + A 2 8inl82 + B 1 cosl8
1

+ B2 cos 2 Sl ). (14)

Now writing the coefficients of Xl and y 2 as A and B:

and

Adding,

(15)

Subtracting,

A - B A1 cos 281 - B 1 cos 28 1 + A2 cos 262 - B2 cos 28 2

(AI - B1 )cos 28 1 + (A 2 - B2 )cos 28 2 • (16)

Equation (14) would be further simplified if the cross-product term in
XY could be made to vanish. This will be achieved if the coefficient
of XY is equal to zero, namely,

i.e. o.

Squaring this equation gives

(AI - B1)28in2281 - 2(A 1 - B 1) (A 2 - B2 )sio 2(31 sin 28 2
+ (A

2
- B2 )2 sin22(32 = o. (17)
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If we square equation (16) we have

(A - B)2 == (AI - Bl)2COS22S1 + 2(A 1 - B l )(A 2 - B 2 )cos 2S l cos 282

+ (A 2 - B2)2COS22B2. (18)

Adding equations (17) and (18) then gives

since (2S 1 + 2S2 ) = 2w.
Equation (14) may therefore be rewritten as

(20)

where

1 1 1 1
A + B == Tz + 75' + Tz + 75' ' (21)

1 122

w • angle between the original x-axes of the two bodies.

(0) Equations for Area of Contact,
Pressupe Distribution, and Compression*

When two bodies are pressed together, displacements will occur in
both: in this case, we are considering forces operating parallel to
the z-axis, and displacements along this axis.

If the displacements at a point are WI and w2 ' then for points
inside the area of contact, since the bodies touch over this area,

while, outside the area of contact,

*The argument here is essentially that of Landau and Lifshitz (1959).
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a being the value of (WI + w2 ) at the or~g~n; i.e. a is the compression
we are seeking. The distribution of the bodies is illustrated by
Figure 5.

Applied force

~Surface 1

Fig. 5

Surface 2

Applied force

Having chosen the axis such that

(i.e. equation (20)), it follows that

a. (23)

Let the component of the pressure at a point (x~y') on the surface
of contact be p(x~y')~ It can be shown (see for example Prescott 1924,
pp. 623-7) that, assuming the surface to be plane, the deformation at
a point (x,y) owing to this pressure is given by

W(X,y) p (x ~ y ') dx' dy',
11

where r is the distance from the point (x,y) to the point (x~y').

Further, using the superposition theorem, the displacement at a point
(x,y) due to the distribution of pressure over an area A is given by

w(x,y) (24)
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Substituting equation (24) in (23) gives

(
1 -cri +_l_-_a_~J If p(x:y') dx' dy'

TIE 1 TIE2 A r
a - Ax2

- By 2, (25)

where the subscripts 1 and 2 designate the elastic constant.s for the
two bodies.

It also follows that

A solution of equation (25) yields expressions for the area of
contact, the pressure distribution over t.he area, B:ndthe compression.
This solution can be found by analogy with a problem in potential
theory.

If an ellipsoid x2/a 2 + y2/b2 + Z2/a2 =: 1 has a uniform volume
charge of density P, then it can be shown (Kellogg 1929, p. 192) that
the potential for points inside the ellipsoid is given by

¢(x,y,z) TIp abo

If the ellipsoid is very much flattened, so that 0 becomes very
small, the contribution from the integral

becomes negligible and we may write

The potential can also be expressed in a more elementary way as

¢(x,y,z) JJt (x -
e dx' qy' dz'

X')2 + (y _ y,)2 + (z _ Z')2)1/2 '

integrating over the volume of the ellipsoid.
If, in this last expression, z and z' are written as zero, and

the resulting expression is inte~r~ted with respect to z' over the
limits ± 011 - (X'2/a2) - (y'2/b ), then
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1/2

~(X.y) = 2pa II (1 - ~:2 _~~2) . d:1:'rdY ' • (27)

where p = (x - X')2 + (y _ y')2)1/2.
Equation (27) then refers, as does equation (26), to the case of

an ellipsoid very much flattened in the a-direction, and the two may
be equated, giving

Comparing equations (25) and (28), it will be seen that, if the
right-hand sides are viewed as quadratics in x and y, they have
identical forms, while the left-hand sides are integrals of the same
form. It follows that the area of contact is bounded by the ellipse
x 2 /a 2 + y2/b2 = 1. and that the pressure distribution over the area of
contact is given by

Equating the integral Is p(x,y) ax dy to the total force, P,
tending to compress the two bodies,

k 3P/2Tfab

and

x2 2 1/2
p(x,y) = (3P/2nab) (1 - 2" -liT) ·

a b
(29)

Substituting equation (29) in equation (25), and using equation (28)

a. ... Ax 2
- By 2 , (30)

where VI = (1 - Of}/TIE1 and V2 = (1 - cr~)/TIE2.
As this expression must hold for all values of x and y within the

contact ellipse, expressions for a, A, and B can be obtained by equating
coefficients on both sides of (30), leading to:
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3
V

2
) ( dt/J (31)a. = - P(V + (a 2+lJJ)·(b 2 +lJJ) lJJ) If 2

,4 1

A =1 P(V + V
2

) ( dt/J (32)4 1 (a 2 +1JJ) (a 2+1lJ) (b 2+tJ;)lJJ) 1!2
,

B 3 + V2 ) ( dllJ (33)= "4 P(V1 (b 2+1JJ) (a 2 +1JJ) (b 2+tJ;) lJJ) 1/2

The quantities a and b appear in the expression for a. as parameters
and are in general unknown, and are determined from equations (32) and
(33). These expressions are then used to obtain a and b from known
values of A and B.

III. SPECIAL CASES

(a) Two Spheres in Contact

If the spheres have diameters D1 and D2 respectively, then from
equations (10) and (11), we have:

and the area of contact is a circle (very flattened sphere) and a = b.
By adding the above equations, we have

2 1 1 2(1 1)
2 1 + 2 2 = X (- + -) + Y -D + D ·

D1 D2 1 2

Comparing this equation with equation (20), it follows that

A

Then equations (32) and (33) become identical and may be written

Putting tlJ1/2 = p, we can write
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A = B

Therefore

Equation (31) gives the total compression in this case as

Again putting ~1/2 p, we can write

a = t P(V1 + V2 ) r 2dp
o a2 + p2

= 31T P ( V + V
2
).

4a 1

Substituting for a, we then have

(b) Sphere in Contact with a PZane

This can be considered as two spheres in contact, the diameter of
one sphere being infinite.

The formula for a then becomes

(c) Sphere in Contact with an InternaZ Sphere

If the diameter of the internal sphere is D
1

and the diameter of
the small sphere is D

2
then the situation is similar to that in III (b)

except that in the coordinate system adopted, the diameter of the
internal sphere becomes negative, giving



39

(d) Equal Cylindeps Crossed at Right Angles

Since two of the curvatures are equal and two are infinite, we
can write equations (10) and (11) as:

i.e.

A
_ 1

B- V ·

From similar derivation to that given in III (b) , we therefore have

(e) Unequal Cylinders Crossed at Right AngZes

If the diameters of the two cylinders be D and D respectively,
then, if their axes are at right angles, equati~ns (101 and (11) become:

t!-
O + D '

2

i.e.

1
A = D'

1

B 1=v;
Now the equations connecting stress and strain, i.e. equations (31),

(32), and (33), can be expressed in terms of the eccentricity e of the
ellipse of contact 1 - e 2 = h2 /a 2 •

Considering equation (32), if we multiply the top and bottom lines
of the integral by (l/a 2 )5/2 we have
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Writing ~/a2 = ~ the equation becomes

i.e.

Similarly, it can be shown that equations (31) and (33) may be
written:

These equations can be simplified by a further change of variable,

namely, by putting ~ = cot 2 e where e goes from into 0 as ~ goes from
o to 00. Then

dZ; == -2 cot e cosec 2 8 • de.



Substituting in the equation for Aa 3 we then have:

2

and, by reversing limits and sign,

Similarly it can be shown that

1!.
3 J2 sin2 e de

Ba 3 = -2 P(V1 + V2 )
(1 - e 2 sin2e)3/2 'o

Now the complete elliptic integral of the first class, K, is

41

K=

and

dK- = ede
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Also the complete elliptic integral of the second class, E, is

and

dE
de = -e

The equations can therefore be written in terms of the complete elliptic
integrals thus:

dE
de '

dK
de '

3
where Q =4 (VI + V2 )·

These equations may be combined to give a compression equation
independent of a, namely,

1 13
a = 2K(PQ)2/3( 1] .

2D (_ 1- dE)
1 e de

Now the relationships connecting E and K are:

dE 1 (E _ K)
de = e

and

from which we have
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1 dE 1 (E _ K)e de = ~

and

Therefore, for any chosen value of e we can give the corresponding
A 1 dE

values of B ' K, and - e de ·

Sets of such values are given in Appendix II.

(f) UnequaZ Diameter CyZinders Crossed with
Their Axes at Any Angle

This case differs from that of III(e) only in that the angle
between the axes of the cylinders, 8, is some other value than 90°.

It is therefore necessary to obtain the ratio AlB by solving the
following equations (cf. equations (21) and (22» for A and B:

1 1A+B=-+-,DI D2

8 being the acute angle between the cylinder axes, and DI and D2 being
the diameters of the larger and smaller cylinders respectively. The
general formula for the compression is

1 13
a = 2K(PQ) 2/3 ( A )

2 _ 1. dE
· e de

(g) Sphere on a Cy linder

Since one diameter of the cylinder has become infinite,
equations (10) and (11) become:

for the sphere,

for the cylinder,

where DI = diameter of the sphere,
D2 diameter of the cylinder,
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1 2 1 1 2
ZI + Z2 = - X + (-D + -D)Y ,

D1 1 2

1
A = D'

1

and

From these values of A and AlB, it is necessary to calculate the
value of a from

and thence

a = 2QP • K.
a

(h) Sphere Inside a Cylinder

This case is similar to that of III (f) except for the change in
sign necessitated by the internal form of the cylinder. We therefore
have~

for the sphere,

for the cylinder,

and

_ x 2 li­
ZI - D + D '

1 1

All= IJ; - D
2

'

The calculation of a from
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and a from

ex = 2QP • K
a

then follow.

(i) Cylinde~s in Contaot along a Line Parallel to
Their Axes and a Cylinder on a Plane

It is not possible to obtain the solution by direct use of the
expressions already derived by allowing one axis of the ellipse of
contact to become infinite as the solution itself then becomes infinite.
This may appear surprising at first but the reason lies in the fact that
the analysis requires the bodies to be fixed at infinity and this leads
to an infinite displacement. Prescott (1924) has likened the situation
to a load applied to an infinitely long string fixed at one end. The
extension of such a string on the application of any load would be
infinite.

In determining the pressure distribution and the breadth of the
area of contact we shall make use of expressions obtained by allowing
one axis of an ellipse of contact to become infinite. For the remainder,
the contact area will be taken as being a finite rectangle but with one
side very much longer than the other.

The derivation given will be for the case of a pair of cylinders
in contact with their axes parallel. The solution for a cylinder on
a plane is then obtained by allowing the radius of one of the cylinders
to become infinite.

It will be remembered that the pressure distribution over the
ellipse of contact in the three-dimensional case is given by

3P
p(x,y) = 27Tab

The integrated pressure across the minor axis of the ellipse in
the plane x = 0 is then

If ~oth a and P approach infinity in such a way that Pia remains
finite, P is the force per unit length along the area of contact, which
is now rectangular with one side infinite.
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It follows that

p(y)

1/2

(3P/2~ab) (1 - ~]
1/2

2P ( 2]=- l_lL
rrb b2

In the region of the original line of contact the cylinders are
adequately represented by the surfaces:

The cylinders are initially in contact over a line of length 2a.
Applying equation (25),

dy' a - By2, (34)

where r 2 = (y - y')2 + X'2 and the integral extends over the region of
contact, which is taken to be a finite rectangle but with one side very
much longer than the other. We are considering here only points lying
along the y-axis. The assumption that one side of the rectangle, 2a,
is very much longer than the other, 2b, allows the integral in the left­
hand side of (34) to be evaluated.

Write

~(O,y) IfA p(y')/r dx' dy'

.. r: cp(y')/(X'2 + (y - y')2)1/2dx' dy'

.. rb
2p (y ') fa 1/ (x' 2 + (y _ y') 2) 1 / 2dx ' dy'

J-b 0

.rb 2p (y ') 1n (a + (y - li') 2,+ a2
) 1/2) dY'.

J-b Iy - y I

If now a is considered to be large in comparison with (y - y')

~(O,y) .. rb
2p(y') 1n (2a/ly - y'l) dy'

J-b
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and

¢(O,O) = 2(ln 2a) f+b p(y')dy' - f+b p(y') In (y')2dy',
-b -b

where we are now restricted to the point (0,0).

Now f+b p(y')dy' = P, the force per unit length and
-b

¢(O,O) [

b 1/2

2P In 2a - (2P! Tfb ) -b (1 - ~ ~ 2) In (y') 2dy' .

It remains then to determine the breadth of the area of contact
and to evaluate the integral.

From equations (25) and (28),

using p(y)

B (VI + V2)P ( (b2 + 1/J~~721/J172
- 22(V1 + V2 )Plb ,

i.e.

Turning now to the evaluation of the integral
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Write y/b sin e" then dy = b cos e de giving

I = b

Now

and

so that

+2!. +1T

2b In b L~ cos 2 e de + 2b L~ cos 2 e In Isinslde.

2 2

]I

L~ cos
2
e In Isin elde - *(l + In 4) ,*

2

1 + 1n
2

Substitution then leads to

~(O,O) = 2P(ln 2a + (1 + In 4)/2 - In b),

which in turn gives

a = 2P(V1 + V2 )[(1 + In 4)/2 + In 2a - In b].

The form of the expression for the compression of a pair of
cylinders with their axes parallel and for a cylinder on a plane is
identical. The compressions are then given by substituting the
appropriate value for b in each case.

*Birens de Haan (1957), [305]8.



49

Pair ,of Cylinders with Their Axes Parallel:

Therefore

giving

Cy linder on a Flat:

giving

1
B=15'

so that
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APPENDIX I

Tables of Elastic Constants and Derived Quantities

The values for the elastic constants given in Tables 1 and 2 are
intended as a guide to the values to be expected. The actual values
of the constants for a material are dependent on its precise composition
and past history and are affected by such things as heat treatment and
the method of fabrication. The values given, however, should be adequate
for the calculation of compressions in most practical cases, as the
percentage error in a calculated compression due to an error in
a constant is of the same order as the percentage error in the constant.
The formulae derived here do not necessarily apply to anisotropic
materials, in particular to crystals where the elastic properties may
be significantly different for different axes.



TABLE 1

Elastic Constants in Metric Units

Young's Modulus Young's Modulus Poisson's Ratio
Material E E CJ Source*

(10 10 Newtons/m2 ) (10 6 gf/nun2
)

Aluminium 7.05 7.19 0.345 K & L
Copper 13.0 13.24 0.343 K & L
Gold 7.8 8.0 0.440 K & L
Platinum 16.8 17.13 0.377 K & L
Silver 8.28 8.43 0.367 K & L
Tungsten carbide

% Co
6 72.4 73.8 0.280 A.S.M.

10 60.0 61.2 0.200
16 52.4 53.4 0.220

Chromium carbide
(Carmet CA-815G) 33.9 34.6 0.280 Carmet

Steel
1% C 20.9 21.4 0.293 K & L
Mild 21.0 21.4 0.291 K & L

Glass
Pyrex 6.2 6.3 0.24 A.I.P.
Heavy silicate flint 5.35 5.46 0.224 A.I.P.
Light borate crown 4.61 4.70 0.274 A.I.P.

Brass
70% Cu, 30% Zn 10.4 10.6 0.374 A.I.P.

Silica (fused) 7.29 7.43 0.17 A.I.P.

V1
N

*A.I.P.
K & L
A.S.M.
Carmet

American Institute of Physics Handbook: 2nd Edition.
Kaye & Laby "Physical & Chemical Constants": 12th Edition (1959).
A.S.M. Handbook: 8th Edition, 1961, p. 664.
Allegheny Ludlum Steel Corporation.



TABLE 1 (Cont'd)

Elastic Constants in Metric Units

----------- in terms of gf/mm2

(l-a 2 )IE (1-a 2 ) IE) 2/3 V = (I-a 2
) / TIE Q2/3 = (1 V) 2/3

Material 2

( 10- 7 ) (10- 5 ) (10- 8 ) (10- 5 )

Aluminium 1.225 2.467 3.901 1.507
Copper 0.667 1.644 2.122 1.004
Gold 1.014 2.174 3.227 1.328
Platinum 0.501 1.359 1.594 0.830
Silver 1.026 2.192 3.266 1.339
Tungsten carbide

% Co
6 0.125 0.538 0.397 0.329

10 0.157 0.627 0.500 0.383
16 0.178 0.682 0.567 0.417

Chromium carbide
(Carmet CA-815G) 0.266 0.892 0.848 0.545

Steel
1% C 0.427 1.221 1.359 0.746
Mild 0.427 1.222 1.361 0.747

Glass
Pyrex 1.491 2.811 4.745 1.717
Heavy silicate flint 1. 741 3.118 5.542 1.905
Light borate crown 1.968 3.383 6.263 2.067

Brass
70% eu, 30% Zn 0.811 1.874 2.582 1.145

Silica (fused) 1.306 2.575 4.158 1.573

V1
W



TABLE 2

Elastic Constants in lbf/in2

Young's Modulus Poisson's Ratio
Material E a Source*

(10 6 lbf/in2
)

Aluminium 10.22 0.345 K & L
Copper 18.83 0.343 K & L
Gold 11.3 0.44 K & L
Platinum 24.37 0.377 K & L
Silver 12.00 0.367 K & L
Tungsten carbide

% Co
6 105 0.28 A.S.M.

10 87 0.20
16 76 0.22

Chromium carbide
(Cannet CA-815G) 49.2 0.28 Carmet

Steel
1% C 30.5 0.293 K & L
Mild 30.5 0.291 K & L

Glass
Pyrex 9.0 0.24 A.I.P.
Heavy silicate flint 7.76 0.224 A.I.P.
Light borate crown 6.69 0.274 A.I.P.

Brass
70% Gu, 30% Zn 15.1 0.374 A.I.P.

Silica (fused) 10.57 0.17 A.I.P.

In
+:'"

*A.I.P.
K & L
A.S.M.
Carmet

American Institute of Physics Handbook: 2nd Edition.
Kaye & Laby "Physical & Chemical Constants": 12th Edition (1959).
A.S.M. Handbook: 8th Edition, 1961, p. 664.
Allegheny Ludlum Steel Corporation.



TABLE 2 (Cont'd)

Elastic Constants in lbf/in2

(1-o 2 )IE ( (1-02 ) / E) 2/3 V = (1-02
) /TTE Q2/3 = (1 V)2/3

Material 2

(10-8 ) (10- 5 ) (10-8 ) (10- 5 )

Aluminium 8.616 1.951 2.742 1.192
Copper 4.687 1.300 1.492 0.794
Gold 7.128 1.719 2.269 1.050
Platinum 3.521 1.074 1.121 0.656
Silver 7.214 1.733 2.296 1.059
Tungsten carbide

% Co
6 0.878 0.426 0.279 0.260

10 1.103 0.496 0.351 0.303
16 1.252 0.539 0.399 0.329

Chromium carbide
(Carmet CA-815G) 1.873 0.705 0.596 0.431

Steel
1% C 3.001 0.966 0.955 0.590
Mild 3.005 0.967 0.957 0.590

Glass
Pyrex 10.48 2.223 3.336 1.358
Heavy silicate flint 12.24 2.465 3.896 1.506
Light borate crown 13.83 2.675 4.403 1.634

Brass
70% Cu, 30% Zn 5.702 1.481 1.815 0.905

Silica (fused) 9.184 2.036 2.923 1.244

VI
V1
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APPENDIX II

1 dE
Values of K, - e de ' and Eccentrioities for Arguments AlB

The values given for the complete elliptical integral of the first

type, K, and the quantity - 1.. ddE have been derived from a number ofee
sources. Tables 3-6 for AlB in the range 0.01 to 1.00 are due to Rolt
and Grant (1921), while the values given in Figure 6 have been derived
using expressions given by Airey (1935). Both these series of values
have been point-checked against a digital computer program based on
the method of the arithmetic-geometric mean. The curve of (1 - e 2

),

Figure 7, has been derived from the relationships that exist between
AlB, K, and E.

TABLE 3

AlB [1.00(0.01)0.50]

A K 1 dE A K 1 dE
B - e de B - e, de

1.00 1.5708 0.7854 0.75 1.7249 0.9037
0.99 1.5761 .7894 74 1.7322 .9095

98 1.5814 .7934 73 1.7397 .9153
97 1.5868 .7974 72 1.7472 .9213
96 1.5922 .8015 71 1.7549 .9274

0.95 1.5978 0.8057 0.70 1.7628 0.9336
94 1.6034 .8100 69 1.7707 .9399
93 1.6090 .8142 68 1.7788 .9463
92 1.6148 .8186 67 1.7870 .9529
91 1.6206 .8230 66 1.7953 .9595

0.90 1.6264 0.8275 0.65 1.8038 0.9664
89 1.6324 .8320 64 1.8125 .9733
88 1.6384 .8367 63 1.8213 .9804
87 1.6445 .8413 62 1.8302 .9876
86 1.6507 .8461 61 1.8393 .9949

0.85 1.6570 0.8509 0.60 1.8486 1.0025
84 1.6634 .8558 59 1.8581 1.0101
83 1.6698 .8608 58 1.8677 1.0180
82 1.6764 .8659 57 1.8775 1.0260
81 1.6830 .8710 56 1.8876 1.0341

0.80 1.6897 0.8762 0.55 1.8978 1.0425
79 1.6965 .8815 54 1.9082 1.0511
78 1.7035 .8869 53 1.9188 1.0598
77 1.7105 .8924 52 1.9297 1.0688
76 1.7176 .8980 51 1.9408 1.0779

0.50 1.9521 1.0874



TABLE 3 (Cont'd)

AlB: [0.500(0.005)0.200]

A K 1 dE A K 1 dE
If - e de B - e de

0.500 1.9521 1.0874 0.350 2.1595 1.2632
495 1.9579 1.0921 345 2.1680 1.2705
490 1.9637 1.0970 340 2.1766 1.2780
485 1.9696 1.1019 335 2.1853 1.2856
480 1.9755 1.1068 330 2.1942 1.2933

0.475 1.9816 1.1119 0.325 2.2032 1.3012
470 1.9877 1.1170 320 2.2124 1.3092
465 1.9938 1.1221 315 2.2218 1.3173
460 2.0001 1.1273 310 2.2312 1.3256
455 2.0064 1.1326 305 2.2409 1.3341

0.450 2.0128 1.1380 0.300 2.2507 1.3427
445 2.0192 1.1434 295 2.2607 1.3515
440 2.0258 1.1490 290 2.2709 1.3604
435 2.0324 1.1546 285 2.2812 1.3696
430 2.0391 1.1602 280 2.2918 1.3789

0.425 2.0459 1.1660 0.275 2.3025 1.3884
420 2.0528 1.1718 270 2.3135 1.3981
415 2.0597 1.1777 265 2.3247 1.4080
410 2.0668 1.1837 260 2.3361 1.4181
405 2.0739 1.1898 255 2.3477 1.4285

0.400 2.0812 1.1960 0.250 2.3595 1.4391
395 2.0885 1.2022 245 2.3716 1.4499
390 2.0960 1.2086 240 2.3840 1.4609
385 2.1035 1.2150 235 2.3966 1.4723
380 2.1112 1.2216 230 2.4096 1.4839

0.375 2.1189 1.2282 0.225 2.4228 1.4958
370 2.1268 1.2350 220 2.4363 1.5080
365 2.1348 1.2419 215 2.4501 1.5205
360 2.1429 1.2489 210 2.4643 1.5333
355 2.1511 1.2560 205 2.4788 1.5465

0.200 2.4937 1.5600
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TABLE 4

AlB [0.200(0.001)0.100]

A K 1 dE A K 1 dE
B - e de B - e de

0.200 2.4937 1.5600 0.175 2.5745 1.6337
199 2.4968 1.5627 174 2.5779 1.6369
198 2.4998 1.5655 173 2.5814 1.6401
197 2.5029 1.5683 172 2.5849 1.6433
196 2.5059 1.5711 171 2.5885 1.6465

0.195 2.5090 1.5739 0.170 2.5920 1.6498
194 2.5121 1.5767 169 2.5956 1.6531
193 2.5152 1.5796 168 2.5992 1.6564
192 2.5184 1.5824 167 2.6028 1.6597
191 2.5215 1.5853 166 2.6064 1.6631

0.190 2.5247 1.5882 0.165 2.6101 1.6664
189 2.5279 1.5911 164 2.6138 1.6698
188 2.5311 1.5940 163 2.6175 1.6733
187 2.5343 1.5970 162 2.6212 1.6767
186 2.5376 1.5999 161 2.6250 1.6802

0.185 2.5408 1.6029 0.160 2.6287 1.6836
184 2.5441 1.6059 159 2.6325 1.6871
183 2.5474 1.6089 158 2.6364 1.6907
182 2.5507 1.6119 157 2.6402 1.6942
181 2.5541 1.6150 156 2.6441 1.6978

0.180 2.5574 1.6181 0.155 2.6480 1.7014
179 2.5608 1.6211 154 2.6519 1.7051
178 2.5642 1.6243 153 2.6559 1.7087
177 2.5676 1.6274 152 2.6598 1.7124
176 2.5710 1.6305 151 2.6639 1.7161



TABLE 4 (Cont'd)

AlB: [0.200(0.001)0.100]

A K 1 dE A K 1 dE
B - e de B - e de

0.150 2.6679 1.7198 0.125 2.7786 1.8230
149 2.6719 1.7236 124 2.7835 1.8275
148 2.6760 1.7274 123 2.7884 1.8321
147 2.6801 1.7312 122 2.7934 1.8368
146 2.6843 1.7350 121 2.7984 1.8415

0.145 2.6885 1.7389 0.120 2.8034 1.8462
144 2.6927 1.7428 119 2.8085 1.8510
143 2.6969 1.7468 118 2.8136 1.8558
142 2.7012 1.7507 117 2.8188 1.8607
141 2.7054 1.7547 116 2.8240 1.8656

0.140 2.7098 1.7587 0.115 2.8293 1.8705
139 2.7141 1.7628 114 2.8346 1.8755
138 2.7185 1.7669 113 2.8399 1.8805
137 2.7229 1.7710 112 2.8453 1.8856
136 2.7274 1.7751 111 2.8508 1.8908

0.135 2.7319 1.7793 0.110 2.8563 1.8960
134 2.7364 1.7835 109 2.8618 1.9012
133 2,.7409 1.7878 108 2.8674 1.9065
132 2.7455 1.7920 107 2.8731 1.9118
131 2.7501 1.7964 106 2.8788 1.9172

0.130 2.7548 1.8007 0.105 2.8846 1.9226
129 2.7595 1.8051 104 2.8904 1.9281
128 2.7642 1.8095 103 2.8962 1.9337
127 2.7690 1.8140 102. 2.9022 1.9393
126 2.7738 1.8184 101 2.9082 1.9449

0.100 2.9142 1.9507
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TABLE 5

AlB [0.100(0.001)0.050]

A K 1 dE A K 1 dE
B - e de B - e de

0.100 2.9142 1.9507 0.075 3.0889 2.1171
099 2.9203 1.9565 74 3.0970 2.1249

98 2.9265 1.9623 73 3.1053 2.1328
97 2.9327 1.9682 72 3.1136 2.1408
96 2.9390 1.9742 71 3.1221 2.1489

0.095 2.9454 1.9802 0.070 3.1307 2.1572
94 2.9518 1.9863 69 3.1394 2.1656
93 2.9583 1.9925 68 3.1483 2. 1741
92 2.9649 1.9987 67 3.1573 2.1827
91 2.9715 2.0050 66 3.1664 2.1915

0.090 2.9782 2.0114 0.065 3.1756 2.2004
89 2.9850 2.0179 64 3.1850 2.2094
88 2.9919 2.0244 63 3.1945 2.2186
87 2.9988 2.0310 62 3.2042 2.2279
86 3.0058 2.0377 61 3.2141 2.2374

0.085 3.0129 2.0445 0.060 3.2241 2.2471
84 3.0201 2.0513 59 3.2342 2.2569
83 3.0274 2.0583 58 3.2446 2.2669
82 3.0347 2.0653 57 3.2551 2.2770
81 3.0422 2.0724 56 3.2658 2.2874

0.080 3.0497 2.0796 0.055 3.2767 2.2979
79 3.0574 2.0869 54 3.2877 2.3086
78 3.0651 2.0943 53 3.2990 2.3195
77 3.0729 2.1018 52 3.3105 2.3307
76 3.0809 2.1094 51 3.3222 2.3420

0.050 3.3342 2.3536



TABLE 5 (Cont'd)

AlB [0.0500(0.0005)0.0200]

A K 1 dE A K 1 dE
B - e de B - e de

0.0500 3.3342 2.3536 0.0350 3.5486 2.5626
495 3.3403 2.3595 345 3.5573 2.5710
490 3 .. 3464 2.3655 340 3.5660 2.5796
485 3.3526 2.3715 335 3.5749 2,,5883
480 3.3588 2,,3775 330 3.5839 2.5971

0.0475 3,,3651 2,,3837 0,,0325 3.5930 2.6060
470 3.3715 2.3899 320 3.6023 2.6151
465 3.3779 2.3961 315 3.6117 2.6244
460 3.3845 2.4025 310 3.6213 2.6337
455 3.3910 2.4089 305 3.6310 2.6433

0.0450 3.3977 2,,4153 0.0300 3.6409 2.6530
445 3.4044 2.4219 295 3.6509 2.6628
440 3.4112 2.4285 290 3.6611 2,,6728
435 3,,4181 2.4352 285 3.6715 2,,6830
430 3.4251 2.4420 280 3,,6821 2.6934

0.0425 3.4321 2.4488 0.0275 3,,6928 2.7039
420 3,,4392 2.4558 270 3.7038 2,,7147
415 3.4464 2.4628 265 3.7149 2,,7256
410 3.4537 2.4699 260 3,,7263 2.7368
405 3.4611 2.4771 255 3.7378 2.7482

0,,0400 3.4685 2.4843 0.0250 3,,7496 2.7598
395 3.4761 2.4917 245 3.7616 2.7716
390 3.4837 2.4992 240 3.7739 2.7837
385 3.4915 2,,5067 235 3.7864 2.7960
380 3.4993 2.5144 230 3.7992 2.8086

0,,0375 3.5073 2.5222 0.0225 3.8123 2.8215
370 3,,5153 2.5300 220 3.8256 2.8346
365 3,,5235 2.5380 215 3.8393 2.8481
360 3.5318 2.5461 210 3.8532 2.8618
355 3.5401 2,,5543 205 3.8675 2.8759

0.0200 3.8821 2.8903
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TABLE 6

AlB [0.0200(0.0001)0.0100]

A K 1 dE A K 1 dE
B - e de B - e de

0.0200 3.8821 2.8903 0.0175 3.9611 2.9683
199 3.8850 2.8932 174 3.9644 2.9716
198 3.8880 2.8962 173 3 .. 9678 2.9750
197 3.8910 2.8991 172 3.9713 2.9784
196 3.8940 2.9021 171 3.9747 2.9818

0.0195 3.8971 2.9051 0.0170 3.9782 2.9852
194 3.9001 2.9081 169 3.9816 2.9886
193 3.9032 2.9111 168 3.9851 2.9921
192 3.9062 2 .. 9142 167 3.9887 2.9956
191 3.9093 2.9172 166 3.9922 2.9991

0.0190 3.9124 2.9203 0.0165 3.9958 3.0026
189 3.9156 2.9234 164 3.9994 3.0062
188 3.9187 2.9264 163 4.0030 3.0097
187 3.9219 2.9296 162 4.0066 3.0133
186 3 .. 9250 2 .. 9327 161 4.0102 3.0169

0.0185 3.9282 2.9358 0.0160 4.0139 3.0205
184 3.9314 2.9390 159 4.0176 3.0242
183 3.9346 2.9422 158 4.0213 3.0279
182 3.9379 2.9454 157 4.0251 3.0316
181 3.9411 2.9486 156 4.0288 3.0353

0.0180 3.9444 2.9518 0.0155 4.0326 3.0391
179 3.9477 2.9551 154 4.0364 3.0428
178 3.9510 2.9584 153 4.0403 3.0466
177 3.9543 2.9617 152 4.0441 3.0504
176 3.9577 2.9650 151 4 .. 0480 3.0543



TABLE 6 (Cont'd)

AlB [0.0200(0.0001)0.0100]

A K 1 dE A K 1 dE
B - e de B - e de

0.0150 4.0519 3.0582 0.0125 4.1590 3.1642
149 4.0558 3.0620 124 4.1637 3.1689
148 4.0598 3.0660 123 4.1684 3.1736
147 4.0638 3.0699 122 4.1732 3.1783
146 :4.0678 3.0739 121 4.1780 3.1831

0.0145 4.0718 3.0779 0.0120 4.1829 3.1879
144 4.0759 3.0819 119 4.1878 3.1928
143 4.0800 3.0860 118 4.1927 3.1977
142 4.0841 3.0901 117 4.1977 3.2026
141 4.0883 3.0942 116 4.2027 3.2076

0.0140 4.0925 3.0983 0.0115 4.2078 3.2126
139 4.0967 3.1025 114 4.2129 3.2177
138 4.1009 3.1067 113 4.2181 3.2228
137 4.1052 3.1109 112 4.2233 3.2280
136 4.1095 3.1152 111 4.2285 3.2332

0.0135 4.1138 3.1195 0.0110 4.2338 3.2384
134 4.1182 3.1238 109 4.2391 3.2437
133 4.1226 3.1282 108 4.2445 3.2491
132 4.1270 3.1325 107 4.2499 3.2545
131 4.1315 3.1370 106 4.2554 3.2599

0.0130 4.1360 3.1414 0.0105 4.2610 3.2654
129 4.1405 3.1459 104 4.2666 3.2710
128 4.1451 3.1504 103 4.2722 3.2766
127 4.1497 3.1550 102 4.2779 3.2822
126 4.1543 3.1596 101 4.2837 3.2879

0.0100 4.2895 3.2937
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