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The Calibration of a Roundness Standard

Charles P. Reeve

In t roduc t ion

The Dimensional Metrology Group of the National Bureau of Standards
has been making roundness measurements for many years. In some of the
measurements a high level of precision is not needed. This usually
occurs for obj ects such as cylinders , spheres , and ring gages where
roundness is not the parameter of primary importance. In these cases it
is routine to make a single trace with a roundness measuring instrument
whose output is a polar graph. Much literature has been devoted to the
interpretation of data taken in this form.

When calibrating .objects which are to be used solely as roundness
standards, such as hemispheres, a higher level of precision is called
for. During the last decade a measurement algorithm has been used at
NBS which is unlike any thus far found in the literature. It involves
making several traces of the roundness standard (also referred to as the
workpiece ) where the standard is rotated between traces. A least
squares analysis is performed on the resulting measurements enabling the
noncircularity in the spindle to be separated from the profile of the
standard.

The primary purpose of this paper is to present a detailed descrip-
tion of the mathematical model for this particular measurement process,
Certain related topics are discussed briefly. A method of graphically
displaying the roundness profile is described and an example is given.
Topics tlot discussed because of their availability in the literature are
eftects of stylus type, alignment of stylus, alignment of workpiece , and
effects of imperfect centering.

Preliminaries

Roundness Measuring Instruments

There are two basic types of high precision roundness measuring
instruments. One type has a high precision spindle which carries a
sensitive indicator (stylus) around the circumference of the workpiece
which is held stationary. The other type has a high precision turntable
which rotates the workpiece against a stylus which is held stationary.
NBS currently has both types of instruments.



The Polar Graph

The output in most roundness calibrations is a polar graph. The
roundness profile of the workpiece is transferred to the graph as the
surface of the workpiece deflects the stylus. The continuous trace
represents the radial deviations of the workpiece from the center of
rotation of the spindle. Included in the trace are the deviations from
circularity of the path of the spindle. The magnification factor exag-
gerates the profile in the radial direction , but the angular positions
on the graph retain the same relationship as on the workpiece itself.

In some cases the output of a roundness trac.e consists not of a
polar graph but of a set of n numbers which represent the radial devia-
tions of the workpiece at n equally spaced points around the circum-
ference. This is equivalent to a polar graph except that the trace con-
sists of a discrete number of points instead of a continuous curve.

Whether discrete or continuous, the trace may be interpreted in
several ways as described in the following section.

Methods of Determining Roundness

There are several ways to assign numerical " roundness" values to the
workpiece from its polar graph. One way is to draw either the minimum
circumscribing circle or the maximum inscribed circle and state the
maximum departure from one or the other. Another way is to draw the pair
of concentric circles which enclose the graph and have the minimum
radial separation. This separation is then a measure of the "out-of-
roundness

" . 

Examples of the above are illustrated in some of the
references (2, 10 J . *

A slightly more sophisticated approach is to fit a "least squares
circle" (LSC) to the graph. The LSC is fit through an integral number
of equally spaced points on the curve rather than through the entire
curve. The maximum deviation from the LSC is then another measure of the
out-of-roundness" of the workpiece.

The following derivation of the equations for the LSC is a summary
of the more rigorous derivations given in several of the references
(2, 10, 11) .

Consider a polar graph given in a rectangular coordinate system as
shown in figure 2.1. Let point 0 be the center of rotation of the spindle
and Yi be the distance from 0 to point P on the curve at the angular
position ai' Let point (a , b) be the center of the LSC and R be the
radius of the LSC. Let c2 = a2 + b2 and tan a. = b/a. Then the triangle
between point.s 0, P , and (a, b) has the relationship

y = 

((R+~ )2 - c sin2 (a -0.)) 1/2 + c cos (a -a.) (2-

*Figures in brackets indicate literature references listed at the end of
this paper.



DETERMINATION OF LEAST SQUARES CIRCLE

Least squares
circle (LSC)

Figure 2.

Workpiece trace



where ~
i is the deviation of point P from the LSC.

Since c is many orders of magnitude less than R (in a well centered
trace), the term c sin2 a.) can be neglected , thus

i = R + c cos(a -a.) + ~ (2-2)

Since a == c coso. and b = c sino. this expression can be expanded to give

== R + c cosa
i coso. + c sina i sino. + ~i ' (2-

i R + a cosa i + b sina i + ~ (2-

Let ta
i' i=l

nJ be n equally spaced

the deviations
, 2: ~i, is minimizedi=l

to give the following estimates for

angles. Then the sum of squares of

by the usual method of least squares

the LSC parameters:

1 n
R = ~ 

i==l ~

2 ~

== 

~ ~ Y cos8 ' andn i=l (2-

2 nb = ~ l: Y Sinan i=l

The deviations ~i are given by ~i = Yi - R - a cosai - b sinai
where i-I , n.

(2-

When roundness values are assigned from a single graph) as in the
abo"e ~sl::ea, the graph contains both the workpiece profile and ti~.:.: t3pindleprofile. In a precision instrument the spindle error is usually small
and within known limits and can be ignored except when the most pr.ecise
measurements are needed.

There are currently two methods available for removing spindle error
at the cost of making multiple traces. One method requiring two traces
is given by Donaldson (4 J for uSe on a turntable-type instrument. Between
traces the workpiece and stylus positions are rotated 1800 while the
shaft and housing positions remain the same. If both graphs are recorded
on the same chart the true workpiece profile is obtained by drawing a
third graph halfway between the two. Though well suited fora turntable-
type instrument , this method is not easily adapted to a spindle-type
instrument.



The other method of removing spindle error is the main topic .
this paper. It requires several polar graphs and works equally well on
either type of instrument. A detailed discussion of this method as
applied to a spindle-type instrument is given in the following sections.

Procedure for Taking Data

The workpiece should be centered as well as possible under the
spindle. The mark on the workpiece which donotes the zero angular posi-
tion is aligned with the zero position of the spindle as shown in figure
1. A trace is made with the workpiece in this position. The workpiece

is then rotated clockwise by 360/n degrees as shown in figure 3. 2 and
another trace is made. This process is continued until n traces have
been made. The value of n is arbitrary but is usually at least 4. Note
in the above figures that the zero spindle position is shown pointing
south" This convention was arbitrarily chosen for the current measuring

instrument.

It is important to record the angle ~ between the lever arm of the
stylus and the tangent to the workpiece at the point of contact. This
angle can usually be set to 00 for a sphere , hemisphere

, .

or cylinder as
shown in figures 3. , 3. , and 3. 5 respectively. If an obstruction
exists , as sho.wn in figure 3. , then the angle must necessarily be greater
than 00 The correction for 0 assures that the profile of the workpiece
will be measured normal to the point of contact. A sphere is normally
measured about its equator. A hemisphere is measured as nearly to the
base as possible without the stylus being obstructed. A cylinder is
measured at some specified distance above its base.

If the output of the instrument is a polar graph for each trace of
the workpiece, then the observer should measure the radial distance (in
polar graph units) from the center of each graph to the curve at each of
the n angular positions and record the values on the graphs at the proper
places. The graphs should be numbered from 1 to n and the scale factor
(K) of the instrument should be noted .on at least one of them.

Mathematical ~~del

Parameters

Let the n angular positions on the circumfer.ence
numbered counterclockwise from 1 to n beginning with
Let the angular positions of the spindle be similarly
regard to the direction in which the spindle rotates.
position is then denoted by

360(i- degrees

of the workpiece be
the 00 position.
numbered without
The ith angular
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PROBE POSITIONS FOR 4 TYPES OF STANDARDS
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where i=l n. Let the deviations from the LSC of the workpiece at the a 
position be given bya.

i' and let the deviation of the spindle from its
LSC at the e i position be given by a i For the j th graph let the three
parameters which define the LSC on the gr aph be given by R., a ., and b.

(see equation 2-4). In an idealized measurement system these parameters
would be constant for all j. In reality, though, each rotation of the

workpiece causes it to shift a small amount vertically and horizontally.

To account for this shifting, separate parameters are needed for each

trace.

Let y 
i' be the observed distance (in polar graph units) from the

center of the j graph to the point on the curve which corresponds to

the a i position of the spindle Let K be the magnification factor of

the measuring instrument given in (microinches/po1ar graph unit)* , and
let z.. be given by

.. = (K c.oso) y..

for i=l n and j=l n. The z.. ' s are then the observations to be used in
the mathematical model. 

Measurement Equations

The measurement equations take the form

z.. = Ct . - S. + R. + a. cosa. + b. sina. + E..~J 1; J - 
where the E

ij are independent error values from a distribution with mean
zero and variance 0' (The subscript of .0. is reduced modulo n. Let

z = (z
ll ... znl z12 .,. z

a. = (0.
1 .., a.

13 ::: (13
1 ... S

. Z

. .. 

z )' 

(4-

4J = (~ al bl ... Rn an b
E = (E '" E

nl E12 .,. En2 . , 
. E

1n ... E

) , , 

and

*Customary U. S. units are used in this report rather than the recognized
metric (SI) units. The well established ongoing calibration procedures
described here employ customary units exclusively. The conversion to SI
units will be made at a future time.



X = (4-

l -I

where ' denotes matrix or vector transposition , and p
I is the n x n

permutation matrix given by

0 ... 0 0
001 0

I =

(4-
0 0 0
1 0 0

0 1
0 0

I is the nxn identity matrix , and A is the nx3 matrix given by

cos8 sin8

cos8 sin8

A = (4-

cos8 sin8

(Note that p
o = pn = I.

in the matrix form
The measurement equations can then be written

z = X m+ E: . (4-

Restraints

The n
2 by Sn system given above has no unique least squares solution

because the restraints which were arbitrarily set on a. and S (that they
be deviations from least squares circles) have not yet been included in
the model. These are included by adding the six equations

a.. cos8 a.. sin8
i=l i=l i=l

and (4-



t:l B
i = El B i cosa i = t1 B i sin6 i = 0

to the model. In matrix notation the restraints take the form

a. = = 0 (4-

where A is defined as in equation 4-

Method of Solution

The model can now be solved by the method of restrained least
squares (3). The least squares estimation takes the form

EC.) = x(:J

where (4-
Var(z) = 

The normal equations (incorporating the six restraints) take the form

A 0

0 A

0 0 (4-
0 0

0 0

where A = (A
I A2 ... A

)' are Lagrangian multipliers entering in the mini-

mization process. The least squares estimates of the unknowns are given

tjJ 0 0 (4-10)

0 0

where C is the variance-covariance matrix of the estimates.
values of the observations are given by

The predicted



z = (4-11)

and the deviations by

z=z (4-12)

The estimate of cr is given 

s = d/(n2 - 5n + 6) . (4-13)

and the standard d.eviation of the estimates by

~. == 

..JC
and SA 

== 

..J13. n+i n+i (4-14)

Simplified Expression of Results

The matrix of normal equations and its inverse , both given in equa-
tion 4-10, can be written more specifically as

and



!.(I-AQ At

!.(I-AQ A'

. ..

Q A'

Q A'

where Q
i = (A'

A) - The expressions for the estimates can be reduced

i = . E t i+j+nJ= k=l 
i =-~l ~l tk-i+1+n Z

1 n

j = 

t;,1 Z

2 na = - Ej n
k=l Zkj cosa

, and

2 n

j = 

~l Z
kj sina

where

if m=l, and

t =
- 1

2 (1 + 2 cosa
if 2~m~n

(4-15)

(4-16)



(The subscripts of t are reduced modulo n.
the profile estimates is given by

The standard deviat ion of

In-
i = s i = 

(4-17)

for i=l

Sources of Error

Some known sources of .error in roundness measurement are:

(1) horizontal and vertical fluctuations of spindle path from bne
trace to the next

(2) variability due to stylus type

(3) nonuniformity of polar graphs on which traces are recorded, and

(4) variability in observer I s interpolation of trace position on
polar graph.

These errors are assumed to accumulate in a random fashion and thus are
included in the estimate of the standard deviation.

Graphical Display of Roundness Prof ile
In the measurement of roundness it is particularly useful to have a

graph of the measured profile. The n values obtained from the previously
described method of calibration can be plotted on a polar graph to give
an indication of the shape of the workpiece. This graph can be enhanced
by connecting the points with a smooth curve. One good method of doing
this involves the use of periodic cubic spline functions. Let the set
of points t (a )' i=l n+lJ. represent the profile of the workpiece in
rectangular coordinates where 8

n+1 = rL 
+ a2 and~n+l = &1 as shown in

figure 6.1. In each of the intervals t(8
i+1)' i=1. n~' a cubic po1y-

nbmial is fit to the points subj ect to the condition that the cubic
between 8 i-1 and a i must agree with the cubic between a i and a i+l at 8 
in their first and second derivatives. Similarly, the cubic between a

and a
Z must agree with the cubic between 8n and 8n+l at al and 8n+1'

The last requirement makes the spline periodic.
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The resulting equations forma system of 3n equations in 3n unkno\o,Tns
which is tridiagonal except for nonzero elements in the upper right and
lower left hand corners of the associated matrix. In the current computer
program the equations are formulated by extending the method given in
UNIVAC (12 J for a nonperiodic cubic spline. The resulting equations are
then solved by the method given in Ahlberg (1) for a periodic spline.
Once the coefficients of the n cubics are obtained the interpolated value
at a given a O is determined by plugging the value of aO into the appro-
priate cubic. The rectangular graph is then transformed to a polar graph
by plotting the set of points f (p+a. ., 6. ) , i=l ,nl where P+a.. is the distance
from the origin and 6

i is the angle (see fig. 6.2). The parameter p is
an arbitrary constant.

graph.
Note that 6

n+l is identical to 61 on the polar

Example

A glass hemisphere designatedL9474 was measured ona spindle-typeinstrument. Twelve traces were made with the hemisphere rotated 300
between each trace. The radial distances y.. (in polar graph units)
were recorded at 300 intervals on each trac~J as shown 

in figure 1. The
scale factor was determined to be K = 5. 56 micro inches/unit and 0 was
approximately 00 The true radial distances z .. = (K coso) y.. where~J i=l n and j=l n were computed. Then using equations 4-15 and 4-16 the
est:iJ:nates of the unknown parameters were computed as given in figure 7.
(Note also the standard deviation values. The profile of the hemisphere
was plotted by the computer as shown in figure 7. 3. A The small "*" signs
indicate the values of the least squares estimates a.. for i=1 12 relative
to the dotted circle (outward is 

+). 

In this exampl~ interpolated values
were computed at 720 equally spaced points. The values were connected
by straight lines , but .due to their closeness they give the appearance
of a smooth continuous curve. The estimates R., a ., and b. are omitted

because they are normally not of interest. The total uncertainty of each

prof i1e value was taken to be the three standard deviation 1 imit for
random error.

Conclusion

The data reduction process is now fully computerized and incorporates
the s:iJ:nplified expressions for the estimates given in equations 4-15 and16. The output includes the usual Report of Calibration plus a plot of
the computed roundness profile.

The strong point of this method of roundness measurement is that it
allows the spindle error to be separated from the workpiece profile while
giving an est:iJ:nate of the measurement precision. It should be used when-
ever the desired level of precision is so great that the out-of-roundness
of the spindle path becomes significant.



Observed Values of y ij

i j=!

K = 5. 56 microinches/po1ar chart unit
0 = 00

Figure 7.

Least squares estimates of profiles

Position

(micro inches)

Hemisphere Spindle

300
600
900

1200
1500
1800
2100
2400
2700
3000
3300

Std. dev. of residuals = . 50 micro inch
Std. dev. of estimates = . 13 microinch

Uncertainty of estimates ~ . 38 microinch

Figure 7.
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