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FOREWORD

When the National Bureau of Standards was established more than 80
years ago, it was given the specific mission of aiding manufacturing
and commerce. Today, NBS remains the only Federal laboratory wi th this
explicit goal of serving U.S. industry and science. Our mission takes
on special significance now as the country is responding to serious
challenges to its industry and manufacturing--challenges which call for
government to pool its scientific and technical resources with industry
and uni versi ties.

The links between NBS staff members and our industrial colleagues
have always been strong. Publication of this new Industrial
Measurement Series . aimed at those responsible for measurement in
industry, represents a strengthening of these ties.

The concept for the series stems from the joint efforts of the
National Conference of Standards Laboratories and NBS. Each volume
will be prepared jointly by a practical specialist and a member of the
NBS staff. Each volume will be written wi thin a framework of
industrial relevance and need.

This publication is an addition to what we anticipate will be a
long series of collaborative ventures that will aid both industry and
NBS.

Ernest Ambler . Director

iii



INTRODUCTION

This paper was published originally as a chapter in the book
entitled " Quality Assurance Practices for Health Laboratories"

. * 

It is
for that reason that the examples used as illustrations are taken from
health-related fields of research. However , the statistical concepts
and methods presented here are entirely general and therefore also
applicable to measurements originating in physics , chemistry,
engineering, and other technical disciplines. The reader should have
no difficulty in applying the material of this paper to the systems of
measurement in his particular field of activity.

J. Mandel
January, 1986

* J. Mandel and L. F. Nanni, Measurement Evaluation Quality Assurance
Practices for Heal th Laboratories. Washington: American Public
Health Association; 1978: 209-272. 1244 p.
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Mea sure In e n 

Evaluation

J. Mandel (principal author), and L. F. Nanni.

Basic Statistical Concepts

Random variables

This chapter is concerned with the evaluation of measurements 

means of statistical methods. This qualification is important, for the total
evaluation of measurements involves many different points of view. What
differentiates the statistical viewpoint from all others is that each measure-
ment is considered as only one realization of a hypothetical infinite popu-
lation of similar measurements. Although , in general , all members of this
population refer to the measurements of the same property on the same
sample (e. , the glucose content of a given sample of serum), they are not
expected to be identical. The differences among them are attributable to
chance effects , due to unavoidable fluctuations in many of the conditions sur-
rounding the measuring process. Alternatively, the members of the popu-
lation of measurements may refer to different samples , or different individ-
uals. Thus , one may consider the glucose content of serum of all healthy indi-
viduals in a certain age range. In such cases, the observed differences among
the measured values include what is referred to as sampling error meaning
the differences in the measured property among. the members of the popu-
lation of samples or individuals. A variable whose value is associated with a
statistical population is called a random variable or variate. 

Frequency distribution and histograms

A mathematical representation can be made of a statistical population
such as the hypothetical infinite population of measurements just mentioned.
To obtain this representation , called afrequency distribution one divides all
the measurements in the population into group intervals and counts the num-
ber of measurements in each interval. Each interval is defined in terms of its
lower and upper limit , in the scale in which the measurement is expressed.
Since in practice one is always limited to a statistical sample, I.e. , a finite
number of measurements , one can at best only approximate the frequency
distribution. Such an approximation is called a histogram. Figure 4. 1 contains
a histogram of glucose values in serum measurements on a sample of 2 197
individuals. It is worth noting that the frequency tends to be greatest in the
vicinity of the mean and diminishes gradually as the distance from the mean
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Fig. 1. Histogram of glucose serum values on a sample of 2, 197 individuals , with a
range of 47.5-157.5 mg/dl and a mean of 100.4 mg/dl.

increases. The grouped data on which the histogram is based are given in
Table 4.

Population parameters and sample estimates

Random samples

The sample of individuals underlying the histogram in Table 4. 1 is rather
large. A large size, in itself, does not necessarily ensure that the histogram
characteristics will faithfully represent those of the entire population. An ad-
ditional requirement is that the sample be obtained by a random selection
from the entire population. A random selection is designed to ensure that
each element of the population has an equal chance of being included in the
sample. A sample obtained from a random selection is called a random
sample, although, strictly speaking, it is not the sample but the method of
obtaining it that is random. Using the concept of a random sample , it is pos-
sible to envisage the population as the limit of a random sample of ever-in-
creasing size. When the sample size becomes larger and larger , the charac-
teristics of the sample approach those of the entire population. If the random
sample is as large as the sample used in this illustration , we may feel con-
fident that its characteristics are quite similar to those of the population.



TABLE 4. 1. GROUPED DATA FOR GLUCOSE IN SERUM

118
204
281
351

390

Glucose
(mg/dl)

107.
112.
117,.5

122.
127.
132.5
137.5
142.
147.
152.
157.

Number of
individuals

Glucose
(mg/dl)

47.5
52.
57.
62.
67.
12.
77.
82.
87.
92.
97.

102.

Number of
individuals

313
220
132

Total number of individuals: 197

Thus, upon inspection of Table 4. , we may feel confident that the mean se-
rum glucose for the entire population is not far from 100.4 mg/dI. We also
may feel confident in stating that relatively very few individuals , say about 
percent of the entire population , will have serum glucose values of less than
70 mg/dI. Our confidence in such conclusions (which , incidentally, can be
made more quantitative), however, would have been much less had all of the
available data consisted of a small sample, say on the order of five to 50 indi-
viduals. Two such sets of data are shown in Table 4.2. Each represents the
serum glucose of ten individuals from the population represented in Table

1. The mean glucose contents of these samples are 107. 57 and 96.37 mg/dl,
respectively. If either one of these samples was all the information available

TABLE 4.2. Two SMALL SAMPLES OF GLUCOSE IN SERUM

Sample I Sample II

Individual Glucose (mg/dl)

134.
119.
91.9
96.

118.
105.
103.4
112.
97.
96.

Individual Glucose (mg/dl)

88.
82.
96.
94.
96.

108.
106.
lOLl
89.4

101.7

Average
Variance
Standard deviation

107.
179.

13 .40

Average
Variance
Standard deviation

96.
70.48
8.40



to us , what could we have concluded about the mean serum glucose of the
entire population? And , in that case, what could we have stated concerning
the percentage of the population having a serum glucose of less than 70
mg/dl?

Population parameters-general considerations
The answer to these and similar questions requires that we first define

some basic characteristics of a statistical sample and relate them to the char-
acteristics of the population. Fortunately, most populations can be charac-
terized in terms of very few quantities, called parameters. In many cases,
only two parameters are required, in the sense that these two parameters
contain practically all the pertinent information that is required for answer-
ing all useful questions about the population. In cases where more than two
parameters are needed, it is often possible to perform a mathematical opera-
tion , called a transformation of scale, on the measured values, which will
reduce the required number of parameters to two. The two parameters in
question are the mean and the standard deviation measuring, respectively,
the location of the center of the population and its spread.

Sample estimates

Let Xb X2, 

. . . , 

XN represent a sample of measurements belonging to
a single population. The sample mean is generally denoted by i and defined

- ~ 

Xl X2 

+ . . . + 

XN Ix;
x= 

The sample variance is denoted by s; and defined by

(4.

2 - 
I(x; X)2

- ----- -_.- ----

- N- (4.

The sample standard deviation is denoted by and defined by

;r 

== 

vsr- (4.

Table 4.2 contains, for each of the samples , the numerical values of , s;.

and 

Population parameters as limiting values of sample estimates

The quantities defined by Equations 4. , 4.2, and 4. 3 are not the popu-
lation parameters themselves but rather are sample estimates of these pa-

rameters . This distinction becomes apparent by the fact that they differ from
sample to sample, as seen in Table 4.2. However , it is plausible to assume
that as the sample size becomes very large, the sample estimates become
more and more stable and eventually approach the corresponding population
parameters. We thus define three new quantities: the population mean de-
noted by the symbol 

p,; 

the population variance denoted by the symbol 0-;
or by the symbol Var(x); and the population standard deviation denoted by
(j x' Thus:



(Jx = v 0-; Var (x) (4.4)

It is customary to denote population parameters by Greek letters (e.

g., 

J-t, 

and sample estimates by Latin letters (e. , i s). Another often used conven-
tion is to represent sample estimates by Greek letters topped by a caret r);
thus and iT both denote a sample estimate of (T. It is apparent from the
above definitions that the variance and the standard deviation are not two
independent parameters, the former being the square of the latter. In prac-
tice, the standard deviation is the more useful quantity, since it is expressed
in the same units as the measured quantities themselves (mgldl in our ex-
ample). The variance, on the other hand, has certain characteristics that
make it theoretically desirable as a measure of spread. Thus, the two basic
parameters of a population used in laboratory measu,rement are: (a) its
mean , and (b) either its variance or its standard deviation.

Sums of squares, degrees of freedom , and mean squares

Equation 4.2 presents the sample variance as a ratio of the quantities
l(xi i)2 arid (N 1). More generally, we have the relation:

MS= (4.

where MS stands for mean square, SS for sum of squares, and DF for de-
grees offreedom. The term " sum of squares" is short for " sum of squares of
deviations from the mean," which is, of course, a literal description of the
expression l(xi i)2 but it is also used to describe amore general concept,
which will not be discussed at this point. Thus , Equation 4.2 is a special case
of the more general Equation 4.

The reason for making the divisor 1 rather than the more obvious
can be understood by noting that the qoantities 

Xl - i X2 - i

, . . . , 

XN - i

are not completely independent of each other. Indeed, by summing them we
obtain:

(Xi - i) = ~Xi - ~i ~Xi (4.

Substituting for i the value given by its definition (Equation 4. 1), we obtain:

(Xi ~ i) =~Xi 0 (4.
This relation implies that if any (N 1) of the quantities (Xi - i) are giv-

, the remaining one can be calculated without ambiguity. It follows that
while there areN independent measurements , there are only 1 indepen-
dent deviations from the mean. We express this fact by stating that the
sample variance is based on degrees offreedom. This explanation pro-
vides at least an intuitive justification for using 1 as a divisor for the

calculation of When is very large , the distinction between Nand 

becomes unimportant , but for reasons of consistency, we always define the



sample variance and the sample standard deviation by Equations 4.2 and
4.3.

Grouped data
When the .data in a sample are given in grouped form , such as in Table

, Equations 4. 1 and 4.2 cannot be used for the calculation of the mean and
the variance. Instead, one must use different formulas that involve the mid-
points of the intervals (first column of Table 4. 1) and the corresponding fre-
quencies (second column of Table 4. 1).

Formulas for grouped data are given below.
To differentiate the regular average (Equation 4. 1) of a set of Xi values

from their "weighted average" (Equation 4. 8), we use the symbol x (x tilde)
for the latter.

2:j;Xji = (4.

lfi
2: 

j;(Xj - iF

= - ~~--

(lfi) 
- 1

(4.

' 1;2- (4. 10)

where 1; (the " frequency ) represents the number of individuals in the ith
interval , and Xi is the interval midpoint. The calculation of a sum of squares
can be simplified by "coding" the data prior to cal~ulations. The coding con-
sists of two operations:
I) Find an approximate central value (e. , 102.5 for our illustration) and

subtract it from each Xi.

2) Divide each difference Xi Xo by a convenient value c., which is generally
the width of the intervals (in our case, c = 5.0). 

Let the mean

Xi 
Ui 

= ---.__.

._m (4. 11)

The weighted average 11 is equal to (i 

.... 

)/c. Operation (I) alters neither the
variance nor the standard deviation. Operation (2) divides the variance by c
and the standard deviation by c. Thus, "uDcoding" is accomplished by multi-
plying the variance of by c2 and the standard 

deviation of by c. The for-
mulas in Equations 4. 9, and 4. 10 are illustrated in Table 4.3 with the data
from Table 4.

We now can better appreciate the difference between population param-
eters and sample estimates. Table 4.4 contains a summary of the values of
the mean , the variance, and the standard deviation for the population (in this
case , the very large sample = 2 197 is assumed to be identical with the
population) and for the two samples of size 10.



TABLE 4. 3. CALCULATIONS FOR GROUPED DATA

47.5
52.5
57.
62.
67.
72.
77.5
82. 1I8
87. 204
92. 281
97. 351

102. 390

Ii 0.4156
= 5.9078

Su = 2.4306

107. 313
112. 220
117. 132
122.
127.
132.
137.
142.
147.
152.
157.

x= 102. 5 + 51i 100.42
s; 25s~ = 147.

,r = 12.

We first deal with the question: " How reliable is a sample mean as an
estimate of the population mean?" The answer requires the introduction of
two important concepts-the standard error of the mean and the method of
confidence intervals. Before introducing the latter, however , it is necessary
to discuss normal distribution.

Standard error of the mean

The widely held, intuitive notion that the average of several measure-
ments is "better" than a single measurement can be given a precise meaning
by elementary statistical theory.

Let x.. X2, 

. . . , 

XN represent a sample of size taken from a population
of mean , p.and standard deviation (T.

Let Xl represent the average of the measurements. We can visualize a
repetition of the entire process of obtaining the results, yielding a new av-
erage X2' Continued repetition would thus yield a series of averages it. X2,
. . . . (Two such averages are given by the sets shown in Table 4.2). These
averages generate, in turn , a new population. It is intuitively clear , and can
readily be proved, that the mean of the population of averages is ttJ.e same as
that of the population of single measurements, i.

p.. 

On the other hand, the

TABLE 4.4. POPULATION PARAMETER AND SAMPLE ESTIMATES (DATA OF TABLES 4. 1 AND 4.

Source Mean (mgldl)

100.42
107.
96.

Variance (mgldl)2

147.
179.
70.

Standard Deviation (mgldl)

Populationa
Sample I
Sample II

12.

13 .40

8.40

'We consider the sample of Table 4. 1 as identical to the population.



variance of the population of averages can be shown to be smaller than that
of the population of single values, and, in fact, it can be proved mathemati-
cally that the following relation holds:

Var(i) = 

:x)

From Equation 4. 12 it follows that

(4. 12)

(1'x
(1'- =

This relation is known as the law of the standard error of the mean, an ex-

pression simply denoting the quantity ux. The term standard error refers to
the variability of derived quantities (in contrast to original measurements).
Examples are: the mean of individual measurements and the intercept or
the slope of a fitted line (see section on straight line fitting). In each case, the
derived quantity is considered a random variable with a definite distribution
function. The standard error is simply the standard deviation of this distribu-
tion.

(4. 13)

Improving precision through replication

Equation 4. 13 justifies the above-mentioned , intuitive concept that aver-
ages are "better" than single values. More rigorously, the equation shows
that the precision of experimental results can be improved , in the sense that
the spread of values is reduced , by taking the average of a number of repli-
cate measurements. It should be noted that the improvement of precision
through averaging is a rather, inefficient process; thus , the reduction in the
standard deviation obtained by averaging ten measurements is only VW, or
about 3 , and it takes 16 measurements to obtain a reduction in the standard
deviation to one-fourth of its value for single measurements.

Systematic errors 

A second observation concerns the important assumption of random-
ness required for the validity of the law of the standard error of the mean.
The values must represent a random sample from the original population.

, for example, systematic errors arise when going from one set of meas-
urements to the next , these errors are not reduced by the averaging process.
An important example of this is found in the evaluation of results from differ-
ent laboratories. If each laboratory makes measurements , and if the within-
laboratory replication error has a standard deviation of u, the standard

deviation between the averages of the various laboratories will generally be
larger than u/VN, because additional variability is generally found between
laboratories.

The normal distribution

Symmetry and skewness

The mean and standard deviation of a population provide, in general , a
great deal of information about the population , by giving its central location



and its spread. They fail to inform us, however , as to the exact way in which
the values are distributed around the mean. In particular, they do not tell us
whether the frequency or occurrence of values smaller than the mean is the
same as that of values larger than the mean , which would be the case for a
symmetrical distribution. A nonsymmetrical distribution is said to be skew
and it is possible to define a parameter of skewness for any population. As in
the case of the mean and the variance, we can calculate a sample estimate of
the population parameter of skewness. We will not discuss this matter fur-
ther at this point , except to state that even the set of three parameters, mean
variance, and skewness , is not always sufficient to completely describe a
population of measurements.

The centra/limit theorem

Among the infinite variety of frequency distributions, there is one class
of distributions that is of particular importance , particularly for measure-
ment data. This is the class of normal, also known as Gaussian , distribu-
tions. All normal distributions are symmetrical , and furthermore they can be
reduced by means of a simple algebraic transformation to a single distribu-
tion , known as the reduced normal distribution. The practical importance of
the class of normal distributions is related to two circumstances: (a) many
sets of data conform fairly closely to the normal distribution; and (b) there
exists a mathematical theorem , known as the central limit theorem. which
asserts that under certain very general conditions the process of averaging
data leads to normal distributions (or very closely so), regardless of the
shape of the original distribution , provided that the values that are averaged
are independent random drawings from the same population.

The reduced form of distribution

Any normal distribution is completely specified by two parameters , its
mean and its variance (or, alternatively, its mean and its standard deviation).

Let be the result of some measuring process. Unlimited repetition of
the process would generate a population of values x.. X2, X3, . . . . If the fre-
quency distribution of this population of values has a mean p- and a standard
deviation of then the change of scale effected by the formula

J.l-

:::: -~----

(4. 14)

will result in a new frequency distribution of a mean value of zero and a
standard deviation of unity. The distribution is called the reduced form of
the original distribution.

, in particular is normal , then z will be normal too , and is referred to
as the reduced normal distribution.

To understand the meaning of Equation 4. , suppose that a particular
measurement lies at a point situated at standard deviations above the
mean. Thus:

p- + 

kG"



Then , the corresponding value will be given by

(p. 

ku) 

Thus the value simply expresses the distance from the mean , in units of
standard deviations.

Some numerical facts about the normal distribution

The following facts about normal distributions are noteworthy and
should be memorized for easy appraisal of numerical data:
1) In any normal distribution , the fraction of values whose distance from the

mean (in either direction) is more than one standard deviation is approxi-
mately one-third (one in three).

2) In any normal distribution, the fraction of values whose distance from the
mean is more than two standard deviations, is approximately 5 percent
(one in twenty).

3) In any normal distribution., the fraction of values whose distance from the
mean is more than three standard deviations is approximately 0. 3 percent
(three in one thousand).

These facts can be expressed more concisely by using the reduced form
of the normal distribution:
1) Probability that III ::::. 1 is approximately equal to 0. 33.
2) Probability that Ill::::. 2 is approximately equal to 0.05.
3) Probability that III ::::. 3 is equal to 0.003.

The concept of coverage

If we define the coverage of an interval from to to be the fraction of
values of the population falling inside this interval , the three facts (1), (2),
and (3) can be expressed as follows (where "sigma" denotes standard devia-
tion):
1) A plus-minus one-sigma interval around the mean has a coverage of about

2/3 (67 percent).
2) A plus-minus two-sigma interval around the mean has a coverage of about

95 percent.

3) A plus-minus three-sigma interval around the mean has a coverage of99.
percent.

The coverage corresponding to a :tz-sigma interval around the mean has
been tabulated for the normal distribution for values of extending from 0 to
4 in steps of 0.01, and higher in larger steps. Tabulations of the reduced nor-
mal distribution , also known as the "normal curve " or "error curve," can
be found in most handbooks of physics and ch~ITlistry, 1 and in most text-
books of statistics. 2-5 Since the coverage corresponding to z = 3.88 is 99.
percent, it is hardly ever necessary to consider values of larger than four.

Confidence intervals

confidence interval aims at bracketing the true value of a population
parameter , such as its mean or its standard deviation , by taking into account
the uncertainty of the sample estimate of the parameter.



Let Xt. X2, 

. . . , 

XN represent a sample of size from a population of
mean IL and standard deviation (T. In general p., and (T are unknown , but can
be estimated from the sample in terms of and respectively.

Confidence intervals for the mean
A confidence interval for the mean p., is an interval such that we

can state, with.a prechosen degree of confidence, that the interval AB brack-
ets the population mean IL.

For example , we see in Table 4.3 that the mean of either of the two sam-
ples of size 10 is appreciably different from the (true) population mean
(100.42 mg/dl). But suppose that the first of the two small samples is all
the information we possess. We then would wish to find two values and
B, derived completely from the sample, such that the interval AB is likely to
include the true value (100.42). By making this interval long enough we can
always easily fulfill this requirement , depending on what we mean by " like-
Iy. " Therefore, we first express this qualification in a quantitative way by
stipulating the value of a confidence coefficient. Thus we may require that
the interval shall bracket the population mean "with 95 percent con-
fidence. " Such an interval is then called a "95 percent confidence interval. "

The case of known (T. We proceed as follows , assuming for the mo-
ment that although IL is unknown , the population standard deviation (T is
known. We will subsequently drop this restriction.

We have already seen that the population of averages has mean 

and standard deviation (T/VN. The reduced variate corresponding to 

therefore:

J.Lz =-
a-/ 

By virtue of the central limit theorem , the variable i generally may be
considered to be normally distributed. The variable then obeys the reduced
normal distribution. We can therefore assert , for example, that the probabili-
ty that

(4. 15)

1.96 ~ z 1.96

is 95 percent. Equation 4. 16 can be written

(4. 16)

-1.96 c:::: 
oX J.L c:::: 1.96

a-/ 

1.96 c:::: J.L c:::: 1.96 VN 
The probability that this double inequality will be fulfilled is 95 percent.

Consequently, Equation 4. 17 provides a confidence interval for the mean.
The lower limit A of the confidence interval is i ~ 1. 96 (T /VN; its upper lim-
it B is i 1.96 (T/VN. Because of the particular choice of the quantity 1.96,
the probability associated with this confidence interval is, in this case , 95

(4. 17)



percent. Such a confidence interval is said to be a "95 percent confidence
interval " or to have a confidence coefficient of 0.95. By changing 1.96 to
3 .00 in Equation 4 . , we would obtain a 99.7 percent confidence interval.

General formula for the case of known (T.

----

More generally, from the
table of the reduced normal distribution , we can obtain the proper critical
value Zc (to replace 1.96 in Equation 4. 17) for any desired confidence

coefficient. The general formula becomes

-=:::JL-=:::X+ZVN 
Values of Zc for a number of confidence coefficients are listed in tables of

the normal distribution.
The length L of the confidence interval given by Equation 4. 18 is

(4. 18)

X+Z

?"- 

=2ZVN VN 
The larger the confidence coefficient , the larger will be Z e and also L. 

is also apparent that increases with 0" butdecreases as becomes larger.
This decrease, however , is slow , as it is proportional to only the square root
of N. By far the best way to obtain short confidence intervals for an un~
known parameter is to choose a measuring process for which the dispersion
0" is small-in other words, to choose a measuring process of high precision.

The case of unknown 0". Student's distribution. basic difficulty as-
sociated with the use of Equation 4. 18 is that 0" is generally unknown. How-
ever , the sample of values provides us with an estimate of 0". This esti-
mate has 1 degrees of freedom. Substitution of for 0" in Equation 4.
is not permissible , since the use of the reduced normal variate in Equation

15 is predicated on a knowledge of 0".

It has been shown , however , that if and are the sample estimates

obtained from a sample of size N, from a normal population of mean IL and
standard deviation 0", the quantity, analogous to Equation 4. 15, given by

(4. 19)

== ~ - 

s/VN
has a well-defined distribution , depending only on the degrees of freedom

1, with which has been estimated. This distribution is known as Stu-
dent's distribution with 1 degrees of freedom.

For 0" unknown, it is still possible , therefore, to calculate confidence in-
tervals for the mean IL by substituting in Equation 4. 18 for 0" , and for Z

The confidence interval is now given by

(4.20)

c . .------. 

-=::: 

JL 

-=::: 

1,. .. VN (4. 21)

The critical value e, for any desired confidence coefficient , is obtained
from a tabulation of Student's distribution. Tables of Student's values can



be found in several references.2-s The length of the confidence interval
based on Student's distribution is 

(4. 22)

For any given confidence coefficient, Ie will be larger than e, so that the

length of the interval given by Equation 4.22 is larger than that given by
Equation 4. 19. This difference is to be expected, since the interval now must
take into account the uncertainty of the estimate in addition to that of x.

Applying Equation 4.21 to the two samples shown in Table 4. , and
choosing a 95 percent confidence coefficient (which , for 9 degrees of free-
dom , gives Ie ::::: 2.26), we obtain:
1) For the first sample:

107.57 - 2. 26 

13.40
IL ~ 107.57 + 2. 26 

13.40vW 
98.0 ~ P- ~ 117.

The length of this interval is

117.2 ~ 98. ::::: 19.

2) For the second sample: 8 40 8.40
96.37 ..:. 2.26 I.t ~ 96.37 + 2. 26. Vlo 

90.4 ~ P- ~ 102.4

The length of this interval is

102.4 ~ 90.4 ::::: 12.

Remembering that the population mean is 100.4 , we see that the confidence
intervals , though very different in length from each other, both bracket the
population mean. We also may conclude that the lengths of the intervals,
which depend on the sample size, show that a sample of size 10 is quite un-
satisfactory when the purpose is to obtain a good estimate of the population
mean , unless the measurement process is one of high precision.

Confidence intervals for the standard deviation

The chi-square dislribulion. In many statistical investigations , the

standard deviation of a population is of as much interest , if not more , than
the mean. It is important , therefore, to possess a formula that provides a con-
fidence interval for the unknown population standard deviation (T, given a
sample estimate 



If the number of degrees offreedom with which is estimated is denoted
by a confidence interval for is given by the formula:

0(p.0(8 Xr, (4.23)

In this formula , the quantities 5 and Xi are the appropriate upper and low-
er percentage points of a statistical distribution known as chi-square, for the
chosen confidence coefficient. These percentage points are found in several
references. 2~5

This formula can be illustrated by means of the two samples in Table
2. To calculate 95 percent confidence intervals for (the population stand-

ard deviation), we locate the limits .at points corresponding to the upper and
lower 2.5 percentage points (or the 97.5 percentile and the 2.5 percentile) of
chi-square. From the chi-square table we see that , for 9 degrees of freedom
the 97.5 percentile is 19. , and the 2.5 percentile is 2.70. The 95 percent
confidence interval in question is therefore:
1) For the first sample:

13.40 / 

-( 

(T -( 13.40 /
" 19.02 " 2.

0::::: 0::::: 24.

2) For the second sample:

8.40 L.J~ '" 8.40 

" 19.02 " 2.

0::::: 0::::: 15.

Here again , both intervals bracket the population standard deviation 12.
but again the lengths of the intervals reflect the inadequacy of samples of
size 10 fora satisfactory estimation of the population standard deviation.

Tolerance intervals

In introducing the data of Table 4. , we observed that it was possible to
infer that about 1 percent of the population has serum glucose values of less
than 70 mg/dl. This inference was reliable because of the large size of our
sample (N = 2 197). Can similar inferences be made from small samples
such as those shown in Table 4. 2? Before answering this question , let us first
see how the inference from a very large sample (such as that of Table 4.
can be made quantitatively precise.

The reduced variate for our data is



JL 100.42z = 
CF 12.

Making = 70 mg/dl , we obtain for the corresponding reduced variate:

70 ~ 100.42z = 12.15 

= -

If we now assume that the serum glucose data are normally distributed (I.e.
follow a Gaussian distribution), we read from the table of the normal distribu-
tion that the fraction of the population for which is less than - 50 is

0062 , or 0.62 percent. This is a more precise value than the 1 percent esti-
mate we obtained from a superficial examination of the data.

It is clear that if we attempted to use the same technique for the samples
of size 10 shown in Table 4. , by substituting for J.t and for 0", we may
obtain highly unreliable values. Thus , the first sample gives a value equal
to (70 - 107.57)/13.40 or -2. , which corresponds to a fraction of the popu-
lation equal to 0.25 percent , and the second sample gives = (70 - 96.37)/
8.40 = -3. , which corresponds to a fraction of the population equal to

08 percent. It is obvious that this approach cannot be used for small sam-
ples. It is possible, however , to solve related problems, even for small sam-
ples. The statistical procedure used for solving these problems is called the
method of tolerance intervals.

alerance intervals far average coverages
Generally speaking, the method of tolerance intervals is concerned with

the estimation of coverages or , conversely, with the determination of inter-
vals that will yield a certain coverage. Let us consider an interval extending
from i - ks to i ks, where is any given value. The coverage correspond-
ing to this interval will be a random variable, since the end points of the inter-
val are themselves random variables. However , we can find a value such
that , on the average, the coverage for the interval will be equal to any pre-
assigned value, such as , for example, 0. 98. These values , for normal distri-
butions, have been tabulated for various sample sizes and desired average
coverages. 6 As an illustration , we consider the first sample of size 10 given
in Table 4. , where

i ~ 107. 13.40

For a coverage of 98 percent and 9 degrees of freedom , the tabulateq value is

= 3.053

Hence the tolerance interval that, on the average , will include 98 percent of
the population is

107. 57 - (3.053)(13.40) to 107.57 + (3.053)(13.40)

66.7 to 148.



We can compare this interval to the one derived from the population itself
(for aU practical purposes , the large sample of2 197 individuals may be con-
sidered as the population). Using the normal table, we obtain for a 98 per-
cent coverage

100.42 - (2. 326)(12. 15) to 100.42 + (2.326)(12. 15)

72.2 to 128.

The fact that the small sample gives an appreciably wider interval is due to
the uncertainties associated with the estimates i and 

For a more detailed discussion of tolerance intervals, see Proschan. 6 Ta-
bles of coefficients for the calculation of tolerance intervals can be found in
Snedecor and Cochran:; and Proschan.

Non-parametric tolerance intervals-order statistics
The tabulations of the coefficients needed for the computation of toler-

ance intervals are based on the assumption that the measurements from
which the tolerance intervals are calculated follow a normal distribution; the
table is inapplicable if this condition is grossly violated. Fortunately, one can
solve a number of problems related to tolerance intervals for data from any
distribution , by using a technique known as non-parametric or distribution-

free. The method always involves an ordering of the data. First one rewrites
the observation x2, 

. . . , 

X N in increasing order of magnitude. We will de-
note the values thus obtained by

xu), XC2J, . . . , XCN)

For example, Sample I in Table 4.2 is rewritten as:
X(1) 91.9 XC6) = 105.
XC2) = 96. X(7) = 112.
XC3) = 96. XCS) = 118.

X(4) = 97. XC9) == 119.

XCS) == 103.4 XUQ) = 134.

The values X(l), X(2), 

. . 

XCN) are denoted as the first , second, . . . , Nth order
statistic. The order statistics can now be used in a number of ways , depend-
ing on the problem of interest. Of particular usefulness is the following gener-al theorem. 

. -

A general theorem about order statistics. -lJn the average, the fraction
of the population contained between any two successive order statistics
from a sample of size is equal to 

~ 1
. The theorem applies to any con-

tinuous distribution (not only the Gaussian distribution) and to any sample
sizeN.

Tolerance intervals based on order statistics. It follows immediately
from the above theorem that on the average, the fraction of the population
contained between the first and the last order statistics (the smallest and the
largest values in the sample) is Z:: . For example, on the average, the frac-



tionof the population contained between the smallest and the largest value
10 - I 

0 a samp e size IS 
10 + 1 = 11 . e meanIng 0 t e qua 1 cation on

the average" should be properly understood. For any particular sample of
size 10, the actual fraction of the population contained in the interval

X(N) X(1) will generally not be equal to Z:: But if the average of those
fractions is taken for many samples of size N, it will be close to Z::
Tolerance intervals involving confidence coefficients

One can formulate more specific questions related to coverages by in-
troducing, in addition to the coverage, the confidence of the statement about
the coverage. For example, one can propose to find two order statistics such
that the confidence is at least 90 percent that the fraction of the population
contained between them (the coverage) is 95 percent. For a sample of size
200 , these turn out to be the third order statistic from the bottom and the
third order statistic from the top (see Table A30 in Natrella ). For further
discussion of this topic , several references are recommended.

Non-normal distributions and tests of normality

Reasons for the central role of the normal distribution in statistical theo-
ry and practice have been given in the section on the normal distribution.
Many situations are encountered in data analysis for which the normal distri-
bution does not apply. Sometimes non-normality is evident from the nature
of the problem. Thus , in situations in which it is desired to determine wheth-
er a product conforms to a given standard , one often deals with a simple di-
chotomy: the fraction of the lot that meets the requirements of the standard,
and the fraction of the lot that does not meet these requirements. Tbe statisti-
cal distribution pertinent to such a problem is the binomial (see section on
the binomial distribution).

In other situations, there is no a priori reason for non-normality, but the
data themselves give indications of a non-normal underlying distribution.
Thus, a problem of some importance is to " test for r.ormality.

Tests of normality

Tests of normality should never be performed on small samples , be-
cause small samples are inherently incapable of revealing the nature of the
underlying distribution. In some situations, a sufficient amount of evidence
is gradually built up to detect non-normality and to reveal the general nature
of the distribution. In other cases, it is sometimes possible to obtain a truly
large sample (such as that shown in Table 4. 1) for which normality can be
tested by " fitting a normal distribution" to the data and then testing the

goodness of the fit."5
Probability plots. A graphical procedure for testing for normality can

be performed using the order statistics of the sample. This test is facilitated
through the use of "normal probability paper " a type of graph paper on
which the vertical scale is an ordinary arithmetic scale and the horizontal



Let represent the fraction of individuals having the stated character-
istic (serum glucose greater than 110 mg/dl) in the sample of size N; and let

= I - 

p. 

It is clear that for a relatively small , or even a moderately large
N, p will generally differ from P. In fact is a random variable with a well-
defined distribution function, namely the binomial.

The mean of the binomial (with parameter P) can be shown to be equal
to P. Thus

E(P) 

== 

(4. 24)

where the symbol E(P) represents the "expected value " of 

p, 

another name
for the population mean. Thus the population mean of the distribution of 

equal to the parameter P. If is taken as an estimate for this estimate will
therefore be unbiased.

Furthermore:

V ar(p) = (4. 25)

Hence

p ~ 

( 4. 26)

The normal approximation for the binomial distribution

It is a remarkable fact that for a large the distribution of can be
approximated by the normal distribution of the same mean and standard de-
viation. This enables us to easily solve practical problems that arise in con-
nection with the binomial. For example , returning to our sample of 100 indi-
viduals from the population given in Table 4. , we have: ,.

E(P) = 0.

CT, 
(0,

i~,
785) ~ 0,0411

From these values , one may infer that in a sample of = 100 from the
population in question , the chance of obtaining values of less than 0.
(two standard deviations below the mean) or of more than 0.30 (two standard
deviations above the mean) is about 5 percent. In other words , the chances
are approximately 95 percent that in a sample of 100 from the population in
question the number of individuals found to have serum glucose of more
than 110 mg/dl will be more than 13 and less than 30.

Since , in practice , the value of is generally unknown, all inferences
must then be drawn from the sample itself. Thus, if in a sample of 100 one
finds ap value of, say, 0. 18 (i. , 18 individuals with glucose serum greater
than 110 mgldl), one will consider this value as an estimate for and con-
sequently one will take the value



(0. 18)(1 - 0. 18) = 0. 038
100

as an estimate for cr P' This would lead to the following approximate 95 per-
cent confidence interval for 

0.18 - (1.96)(.038) .c P .c 0. 18 + (1.96)(.038)

10 .c .c 0.

The above discussion gives a general idea about the uses and usefulness
of the binomial distribution. More detailed discussions will be found in two
general references.

Precision and accuracy

The concept of control
In some ways , a measuring process is analogous to a manufacturing

process. The analogue to the raw product entering the manufacturing proc-
ess is the system or sample to be measured. The outgoing final product ofthe
manufacturing process corresponds to the numerical result produced by the
measuring process. The concept of control also applies to both types ofproc-
esses. In the manufacturing process , control must be exercised to reduce to

, the minimum any random fluctuations in the conditions of the manufacturing
equipment. Similarly, in a measuring process, one aims at reducing to a mini-
mum any random fluctuations in the measuring apparatus and in the environ-
mental conditions. In a manufacturing process , control leads to greater uni-
formity of outgoing product. In a measuring process, control results in high-
er precision, I.e. , in less random scatter in repeated measurements of the
same quantity.

Mass production of manufactured goods has led to the necessity of inter-
changeability of manufactured parts, even when they originate from differ-
ent plants. Similarly, the need to obtain the same numerical result for a par-
ticular measurement , regardless of where and when the measurement was
made, implies that Local control of a measuring process is not enough. Users
also require interlaboratory control , aimed at assuring a high degree of " in-
terchangeability" of results , even when results are obtained at different
times or in different laboratories.

Methods of monitoring a measuring process for the purpose of achiev-
ing " local" (I.e. , within-laboratory) control will be discussed in the section
on quality control of this chapter. In the following sections, we will be con-
cerned with a different problem: estimating the precision and accuracy of a
method of measurement.

Within- and between-laboratory variability

Consider the data in Table 4.6, taken from a study of the hexokinase
method for determining serum glucose. For simplicity of exposition, Table



scale is labeled in terms of coverages (from 0 to 100 percent), but graduated
in terms of the reduced z-values corresponding to these coverages (see sec-
tion on the normal distribution). More specifically, suppose we divide the
abscissa of a plot of the normal curve into 1 segments such that the area
under the curve between any two successive division points is ' The
division points will be Z2, 

. . . , 

ZN, the values of which can be determined
from the normal curve. Table 4.5 lists the values 

~ 2 ' . . . ,

' in percent , in column 1, and the corresponding normal values in
column 2, for 10. According to the general theorem about order statis-
tics, the order statistics of a sample of size = 10 "attempt" to accomplish
just such a division of the area into 1 equal parts. Consequently, the
order statistics tend to be linearly related to the values. The order statistics
for the first sample of Table 4.2 are listed in column 3 of Table 4.5. A plot of
column 3 versus column 2 will constitute a " test for normality : if the data
are normally distributed , the plot will approximate a straight line. Further-
more, the intercept of this line (see the section on straight line fitting) will be
an estimate of the mean , and the slope of the line will be an estimate of the
standard deviation.2 For non-normal data, systematic departures from a
straight line should be noted. The use of normal probability paper obviates
the calculations involved in obtaining column 2 of Table 4.5, since the hori-
zontal axis is graduated according to but labeled according to the values

~ 1 , expressed as percent. Thus , in using the probability paper , the ten
order statistics are plotted versus the numbers

100 -U ' 100 Tt ' 

. . . , 

100 

or 9.09, 18. 18, . . . , 90.91 percent. It is only for illustrative purposes that we
have presented the procedure by means of a sample of size 10. One would
generally not attempt to u~e this method for samples of less than 30. Even
then , subjective judgment is required to determine whether the points fall
along a straight line.

In a subsequent section, we will discuss transformations of scale as a
means of achieving normality.

The binomial distribution

Referring to Table 4. , we may be interested in the fraction of the popu-
lation for which the serum glucose is greater than , say, 110 mgldl. A problem
of this type involves partitioning the range of values of a continuous variable
(serum glucose in our illustration) into two groups , namely: (a) the group of
individuals having serum glucose less than 110 mgldl; and (b) the group 
individuals having serum glucose greater than 11 0 mgldl. (Those having se-
rum glucose exactly equal to 110 mgldl can be attached to one or the other
group, or their number divided equally among them.



TABLE 4. 5. TEST OF NORMALITY USING ORDERSTATISTlCSa

Expected cumulative

areasb in percent
Reduced normal

variate
Order statistics

of sample09 - 1.335
18.18 -0.908
27.27 -0.604
36.36 -0.348
45.45 -0. 114
54.54 0. 114
63.64 0.348
72.73 0.604
81.82 0.908
90.91 1.335

Straight Line Fit of column 3 versus column 2:
Intercept == 107.6 = P-

Slope = 15.5 = a-

91.9
96.
96.
97.

103.4
105.

112.
118.
119.
134.

aThe example is merely illustrative of the method. In practice one would never test normality on a sample

of size 10. 

values of 100 + l ' where 10.

Suppose now that we have a random sample of only 100 individuals
from the entire population. What fraction of the 100 individuals will be found
in either group? It is seen that the binomial distribution has shifted the em~
phasis from the continuous variable (serum glucose) to the number of individ~
uals (or the corresponding fraction, or percentage) in each of the two
groups. There are cases in which no continuous variable was ever involved:
for example, in determining the number of times a six appears in throwing a
die. However, the theory of the binomial applies equally to both types of
situations.

The binomial parameter and its estimation

Let represent the fraction (I.e. , a number between zero and one) of
individuals in one of the two groups (e. , serum glucose greater than 110
mgldl) in the population. It is customary to represent the fraction for the oth~
er group by Q. Then it is obvious that 1 .- P. (If the fractions are ex~
pressed as percentages , we have percent = 100 - percent For the
data in Table 4. 1 and the dividing value 110 mgldl , we can calculate 

using the normal distribution:

The reduced value corresponding to 110 mgldl is

110 - 100.42
= 0 79

12.15 
From the table of the normal distribution , we then obtain for 

= 0. 215

Hence 1 - 0.215 == 0.785



TABLE 4.6. DETERMINATION OF SERUM GLUCOSE

Serum sample

Laboratory

40. 76. 137. 206.
42.3 78. 137.4 208.5
42. 77. 138. 204.
40. 77. 138. 210.

43.4 78. 135. 211.6
43. 76. 131.3 201.2
43. 76. 146. 201.2
42. 75. 133.4 208.

41.3 75. 134. 205.
40. 76. 134. 200.
40. 76. 131.5 206.
42. 76.4 133.4 199.

BAli results are expressed in mg glucose/dl.

6 contains only a portion of the entire set of data obtained in this study.
Each of three laboratories made four replicate determinations on each of
four serum samples. It can be observed that, for each sample, the results
obtained by different laboratories tend to show greater differences than re-
sults obtained through replication in the same laboratory. This observation
can be made quantitative by calculating, for each sample, two standard de-
viations: the standard deviation "within" laboratories and the standard de-
viation "between laboratories. Within-laboratory precision is often re-
ferred to as repeatability, and between- laboratory precision as reproduc-
ibility. We will illustrate the method for serum sample A. 

The data for serum A can first be summarized as follows:Laboratory A verage Standard Deviation41.50 0.9382 43.15 0.63541.02 0.793
The three standard deviations could be averaged to obtain an "average

within-Iaboratory standard deviation. However, if one can assume that
these three standard deviations are estimates of one and the same population
standard deviation , a better way is to "pool" the variances,2 and take the
square root of the pooled variance. Using this procedure, we obtain for the
best estimate of the within-laboratory standard deviation s w

liQ.
8)' (O. 5~-;:-LO:i93i ~ 0.798

Let us now calculate the standard deviation among the three average values
41.50 43. , and 41.02. Denoting this standard deviation by S:r, we obtain:



s;r 1.117

If the laboratories displayed no systematic differences, this standard devia-
tion , being calculated from averages of four individual results , should be
equal to /V4 = 0.798/V4 = 0.399. The fact that the calculated value,
1.117, is appreciably larger than 0.399 can be explained only through the
presence of an additional between- laboratory component of variability.
This component, expressed as a standard deviation and denoted by s L

(where stands for " laboratories ), is calculated by subtracting the "antici-
pated" variance, (0.399)2 , from the "observed" variance, (1.117)2 , and tak-
ing the square root:

s(- = v(LlI7)2 

-=-

(0.399)2 = 1.

The calculations for an four serum samples are summarized in Table 4. , in
which standard deviations are rounded to two decimal places.

It may be inferred from Table 4. 7 that s w tends to increase with the glu-
cose content of the sample. The between-laboratory component, s L, shows
no such trend. However, the data are insufficient to establish these facts
with. reasonable confidence. Since our purpose is to discuss general prin-
ciples , and the use of these data is only illustrative, we will ignore these
shortcomings in the discussion that follows.

Accuracy--comparison with reference values

The two components Sw and SL, define the precision of the method. To
estimate its accuracy, one requires reference values for an samples. Let us
assume that such values have been established and are as fonows:

Serum Sample Reference Value. 40.B 76.
133.4. D 204.

The values given here as " reference values" are actuany only tentative.. We
will assume, however , in our present discussion , that they can be considered
to be free of systematic errors. Our task is to decide whether the values ob-
tained in our study are within random experimental error, equal to these

reference values. The grand average value for sample A , 41.89 mgldl , which

TABLE 4.7. SUMMARY OF ANALYSIS FOR SERUM GLUCOSE DATA

Standard deviation

. Serum sample Average (mg/dl)

41.89
76.

136.
205.41

s u' (mg/dl)

1.05

S I. (mg/dl)

1.04

1.07
1.08



we denote by the symbol involves 12 individual determinations and four
laboratories. Its variance, therefore, can be estimated by the formula:

s:r 
(0.80)2

. + 

(1.04)2 = 0.12 
Now differs from the reference value by the amount:

41.89 - 40.8 = 1.09

Corresponding values for all four samples are shown in Table 4.
It can be seen that, on the one hand, all four grand averages are larger

than the corresponding reference values but, on the other hand, the differ-
ences are of the order of only one or two standard errors s~. One would
tentatively conclude that the method shows a positive systematic error (bias)
but , as has been pointed out above, the data are insufficient to arrive at defi-
nite conclusions.

Straight line fitting

The fitting of straight lines to experimental data is a subject of great im-
portance , particularly in analytical laboratories. Many analytical and clinical
methods make extensive use of linear calibration curves for the purpose 

converting a measured quantity, such as an optical absorbance or a ratio 

peaks-heights on a mass-spectrometer scan , into a concentration value for
an unknown constituent. Calibration curves are established by subjecting
samples of known concentrations to the measuring process and fitting lines
to the resulting data. Let be the known concentration , and the measure-
ment (e. , optical absorbance). The data will consist of a set of paired val-
ues, as shown for an illustrative example in the columns labeled and 

Table 4.
Inspection of the table shows that there is a "blank" : for zero concen

tration , one finds a nonzero absorbance value. If one "corrected" the sub-
sequent two values for the blank , one would obtain 0. 189 - 0.050 = 0. 139,
and 0.326 - 0.050 == 0. 276. lethe "corrected" absorbance were proportion-
al to concentration (as required by Beer s law), these two corrected absor-
bances should be proportional to 50 and 100 , I.e. , in a ratio of 1 to 2. Ac-
tually, 0. 139 is slightly larger than (0.276/2). We will assume that this is due

TABLE 4.8. STUDY OF ACCURACY OF GLUCOSE DETERMINATION

Serum sample Reference value Grand average
(R) (1)

40. 41.89 1.09
76. 76. 0.41

133.4 136. 1.29
204. 205.41 1.31 1.25



TABLE 4.9. CALIBRATION CURVE FOR GLUCOSE IN SERUM

050
189
326

0.467
605

1.156
I. 704

0516
1895
3273

0.4652
6030

1.1545
1.7059

0016
0005
0013
0015
0020
0015
0019

100
150
200
400
600

214. 6425 6425

y= 

0516 + 0.0027571 x
. = 0.0019

x = concentration of glucose, in mg/dl

y= 

absorbance

= "

fitted value
d = residual

solely to experimental error in the measured absorbance values, thus assum-
ing that any errors in the concentration values are negligibly -small.

general model
If a represents the true value of the "blank" and 13 the absorbance per

unit concentration , we have, according to Beer s law:

E(y) .~ a = f3x 
(4.27)

where E(y) is the expected value for absorbance, I.e. , the absorbance value
freed of experimental error. Now the actual absorbance, y. is affected by an
experimental error , which we will denote bye. Hence:

y = E(y) + e (4.28)

Combining Equations 4.27 and 4.28 we obtain the "model" equation

=== 

a + f3x + e (4.29)

This equation- should hold for all x-values, Le. xt.x2, 

. . 

XlV. with the same
values of a and 13. Hence

Yi = a + f3Xi + ei (4. 30)

where i= 1 to N.
The errors ei should, on the average, be zero, but each one departs from zero
by a random amount. We will assume that these random departures from
zero do not increase with the absorbance (in some cases, this assumption is
not valid) and that their distribution is Gaussian with standard deviation 0" P'

The object of the analysis is to estimate: (a) a and 13, as well as the uncer-
tainties (standard errors) of these estimates; and (b) the standard deviation
of e; i.e. O"e.



Formulas for linear regression

The fitting process is known in the statistical literature as the "linear
regression of on x. We will denote the estimates of /3, and (T e by 13,

and S e, respectively. The formulas involve the following three quantities:

U= I(Xi i)2

= I(Yi - ji)2

I(Xi - i)(Yi - ji)

In terms of these three quantities, we have the formulas:

(4.31)

(4.32)

(4.33)

/3 = a=y- j3i (4.34)

(JnjU)
N- 

(4.35)

Sp 

= ~ 

Sa Se IvV 
For the data of Table 4.9, the calculations result in the following values:

= 0. 0516, Sa = 0.0010 13 = 0. 0027571, sa = 0.0000036 Se = 0.0019.

Since and 13 are now available, we can calculate, for each x, a "calcu-
lated" (or " fitted" ) value, y, given by the equation 13x. This is , of
course, simply the ordinate of the point on the fitted line for the chosen value
ofx.

The differences between the observed value and the calculated value y

is called a " residual." Table 4.9 also contains the values of y and the resid-
uals, denoted by the symbol" 

. "

It is important to observe that the quantity (W P2/U), occurring in
Equation 4.35., is simply equal to Id~. Thus:

(4.36)

~d'
N~ 

(4.37)

This formula, though mathematically equivalent to Equation 4.35, should be
used in preference to Equation 4.35, unless all calculations are carried out
with many significant figures. The reason for this is that the quantities 

di are
less affected by rounding errors than the quantity (W P2/U).

Examination of residua/s-weighting
The residuals should behave like a set of random observations with a

mean of zero and a standard deviation (J" e' It follows that the algebraic signs
should exhibit a random pattern similar to the occurrence of heads and tails
in the flipping of a coin. In our example, the succession of signs raises some
suspicion of nonrandom ness, but the series is too short to decide on this mat-
ter one way or the other. In any case, the errors are quite small , and the
calibration curve is quite satisfactory for the intended purpose.



The assumptions underlying this procedure of fitting a straight line are
not always fulfilled. The assumption of homoscedasticity (I.e., all i have the
same standard deviation), in particular, is often violated. If the standard de-
viation of the error ei is nonconstant and depends on Xi' the fitting of the
straight line requires the application of "weighted regression analysis.
Briefly, assuming a different value of (Fe. for each i, one defines a "weight"
Wi equal to the reciprocal of the square lof (Fe. Thus:

W' = l/(F

The weights Wi are then used in the regression calculations , leading to for-
mulas that are somewhat different from those given in this section. For fur-
ther details, two references can be consulted.

(4.38)

Propagation of errors

It is often necessary to evaluate the uncertainty of a quantity that is not
directly measured but is derived, by means of a mathematical formula, from
other quantities that are directly measured.

An example

As an example, consider the determination of glucose in serum, using
an enzymatic reaction sequence. The sequence generates a product, the opti-
cal absorbance of which is measured on a spectrophotometer. The proce-
dure consists of three steps: (a) apply the enzyme reaction sequence to a set
of glucose solutions of known concentrations, and establish in this way a cal-
ibration curve of "absorbance" versus " glucose concentration " (b) by use
of the same reaction sequences, measure the absorbance for the "un-
known, " and (c) using the calibration curve, convert the absorbance for the
unknown into a glucose concentration.

It turns out that the calibration curve, for this sequence of reactions, is
linear. Thus , ify represents absorbance , and concentration, the calibration
cu!'ve is represented by the equation:

y=a+f3x (4. 39)

The calibration curve is established by measuring y for a set of known val-
ues. We will again use the data of Table 4.9 for illustration. Fitting a straight
line to these data, we obtain:

y = 0.0516 + 0.OO27571x (4.40)

Let us now suppose that an unknown sample of serum is analyzed 
times

(for example, = 4), and that the average absorbance found is Yu = 0. 3672
(where Yu stands for absorbance for the unknown). Using the calibration
line, we convert the value Yu into a concentration value, Xu, by solving the
calibration equation for 

YIl 0.3672 - 0.0516
XI) 

= - ~- =

o.OO27571 = 114.47 mgldl

How reliable is this estimate?

(4 AI)



Let us assume, at this point , that the uncertainty of the calibration line
is negligible. Then the only quantity affected by error is 

Yu, and it is readily
seen from Equation 4.41 that the error of Xu is equal to that ofyu, divided by
13. If we assume that the standard deviation of a single measured y-value is

0019 absorbance units , then the standard error of Yu, the average of four
determinations , is

0019/ v4 = 0.00095

Hence the standard deviation of Xu 

00095/13 = 0.00095/0.0027571 = 0.34 mg/dl

A more rigorous treatment would also take account of the uncertainty of the
calibration line.

The general case

More generally, a calculated quantity can be a function of several
measured quantities Xb Xz, X3, 

. . . , 

each of which is affe.cted by experimen-
tal error. The problem to be solved is the calculation of the standard devia-
tion of the error of as a function of the standard deviations of the errors of
X.. Xz, X3, 

. . . .

We will only deal with the case of independent errors in the quantities

Xz, X3, . . . ; i.e. , we assume that the error of any one of the s is totally
unaffected by the errors in the other s. For independent errors in the meas-
ured values x.. Xz, X3,' 

. . , 

some simple rules can be applied. They .are all
derived from the application of a general formula known as " the law of prop-
agation of errors " which is valid under very general conditions. The reader
is referred to Mandelz for a general discussion qf this formula.

Linear relations. For 

Xl azxz x3 

+ . . .

(4.42)

the law states:

Var(y) = ai Var(xl) + ai Var(xz

) + 

a~ Var(x3

) + . . . 

(4.43)

As an example, suppose that the weight of a sample for chemical analysis
has been obtained as the difference between two weights: the weight of an
empty .crucible, Wi, and the weight of the crucible containing the sample,
Wz. Thus the sample weight is equal to

S=t Wz - Wl

This is in accordance with Equation 4.42 by writing:

(4.44)

(1)Wl 1)Wz

Hence , according to Equation 4.43

Var(S) = (l)2Var(Wl

) + (-

I)2Var(W2

Var(S) = Var(Wl) + Var(W2



Hence

(J"s = v' 0-2w, 0-2W2 (4.45)

Note that in spite of the negative sign occurring in Equation 4.44 , the vari-
ances of WI and W 2 in Equation 4.45 are added (not subtracted from each
other).

It is also of great importance to emphasize that Equation 4.43 is valid
only if the errors in the measurements Xh X2, Xa, . . . , are independent 

each other. Thus, if a particular element in chemical analysis was deter-
mined as the difference between 100 percent and the sum of the concentra-
tions found for all other elements, the error in the concentrations for that
element would not be independent of the errors of the other elements, and
Equation 4.43 could not be used for any linear combination of the type of
Equation 4.42 involving the element in question and the other elements. But
in that case, Equations 4.42 and 4.43 cou\d be used to evaluate the error vari-
ance for the element in question by considering it as the dependent variable

y. 

Thus, in the case of three other elements Xl' X2, and Xa, we would have:

= 100 - (Xl + X2 + xa

where the errors of X2, and Xa are independent. Hence:

Var(y) = Var(xI) + Var(x2) + Var(xa

since the constant, 100 , has zero-variance.
Products and ratios. For products and ratios, the law of propagation

of errors states that the squares of the coefficients of variation are additive.
Here again, independence of the errors is a necessary requirement for the
validity of this statement. Thus, for 

= Xl . 

with independent errors for I and X2, we have.

(4.46)

(100 
:u 

= (100 

::'

r + (100 

::2

We can , of course, divide both sides of Equation 4.47 by 1002, obtaining:

(4.47)

:u 

= ( ::'

r + ( 

::2 (4.48)

Equation 4.48 states that for products of independent errors, the squares of
the relative errors are additive.

The same law applies for ratios of quantities with independent errors.
Thus, when Xl and X2 have independent .errors , and

y=-

(4.49)

we have

r = ( 

::'

r + ( 

::2 (4. 50)



As an illustration , suppose that in a gravimetric analysis , the sample weight
is S, the weight of the precipitate is and the "conversion factor" is 

Then:

= 10OF

The constants 100 and are known without error. Hence, for this example,

r +( 

, for example, the coefficient of variation for is 0. 1 percent, and that for
is 0.5 percent, we have:

= V (0.005)2 + (0.001)2 = 0.0051

It is seen that in this case , the error of the sample weight has a negligible
effect on the error of the "unknown

Logarithmic functions. When the calculated quantity is the natural
logarithm of the measured quantity (we assumed that 0):

= In 

the law of propagation of error states

(4. 51)

(Tx(T (4.52)

For logarithms to the base 10, a multiplier must be used: for

loglo 

the law of propagation of error states:

(4.53)

-;-

(4. 54)

Sample sizes arid compliance with standards

Once the repeatability and reproducibility of a method of measurement
are known, it is a relatively simple matter to estimate the size of a statistical
sample that will be required to detect a desired effect , or to determine wheth~
er a given specification has been met.

An example

As an illustration , suppose that a standard requires that the mercury
content of natural water should not exceed 2J.Lgll. Suppose, furthermore
that the standard deviation of reproducibility of the test method (see section
on precision and accuracy, and MandeF), at the level of 2J.Lgll is 88J.Lgll. 

subsamples of the water sample are sent to a number of laboratories and



each laboratory performs a single determination, we may wish to determine
the number of laboratories that should perform this test to ensure that we
can detect noncompliance with the standard. Formulated in this way, the
problem has no definite solution. In the first place , it is impossible to guaran-
tee unqualifiedly the detection of any noncompliance. After all, the decision
will be made on the basis of measurements, and measurements are subject to
experimental error. Even assuming, as we do, that the method is unbiased,
we still have to contend with random errors. Second , we have, so far , failed
to give precise meanings to the terms "compliance" and "noncompliance
while the measurement in one laboratory might give a value less than 2,ugll
of mercury, a second laboratory might report a value greater than 2,ug/l.

General procedure-acceptance, rejection, risks

To remove all ambiguities regarding sample size, we might proceed in
the following manner. We consider two situations, one definitely acceptable
and the other definitely unacceptable. For example ,. the

' '

acceptable" situa-

tion might correspond to a true mercury content of 1.5,ugll, and the "unac-
ceptable" situation to a mercury content of 5,ugll (see Fig. 4.2).

Because of experimental errors , we must consider two risks: that of re-
jecting (as noncomplying) a "good" sample J1.5,ugll); and that of accepting
(as complying) a " bad" sample (2. 5,ugll). Suppose that both risks are set at 5
percent.

Let us now denote by the number of laboratories required for the test.
The average of the measurements, which we denote by i , will follow a
normal distribution whose mean will be the true value of the mercury con-
tent of the sample and whose standard deviation will be CT/

88/ . For the "acceptable" situation the mean is 1.5,ugll , and for the
unacceptable " situation it is 5,ugll. We now stipulate that we will accept

CALCULATION OF SAMPLE SIZE
FOR PREDETERMINED RISKS

ACCEPTABLE UNACCEPTABLE

0' 

5 . 0 2..5 3.
CONCENTRATION OF MERCURY

(,ug/ I)
Fig. 4.2. Distribution of measurements of mercury in subsamples of a water sample
sent to laboratories.



the sample, as complying, whenever is less than 2. , and reject , as non-
complying, whenever is greater than 2.0. As a result of setting our risks at
5 percent, this implies that the areas andB are each equal to 5 percent (see
Fig. 4.2). From the table of the normal distribution , we read that for a 5 per-
cent one-tailed area , the value of the reduced variate is 1.64. Hence:

0 - 1.5
z = O.

88/

(We could also state the requirement that (2.0 - 2.5)j(0.88j ) = ~ 1.64

which is algebraically equivalent to the one above. ) Solving for N, we find:

= ( 

r = 8.
(4.55)

We conclude that nine laboratories are required to satisfy our requirements.
The general formula , for equal risks of accepting a noncomplying sample and
rejecting a complying one, is:

= ( 

~ CT (4.56)

where fT is the appropriate standard deviation, Zc is the value of the reduced
normal variate corresponding to the .risk probability (5 percent in the above
example), and is the departure (from the specified value) to which the cho-
senrisk probability applies.

Inclusion of between-laboratory variability

If the decision as to whether the sample size meets the requirements of a
standard must be made in a single laboratory, we must make our calculations
in terms of a different standard deviation. The proper standard deviation , for
an average of determinations in a single laboratory, would then be given

~: 

u~ + u', (4.57)

The term a-Z must be included, since the laboratory mean may differ
from the true value by a quantity whose standard deviation is fTL' Since the

between-laboratory component ul is not divided by N, fT cannot be less
than (h no matter how many determinations are made in the single laborato-
ry. Therefore, the risks of false acceptance or false rejection of the sample
cannot be chosen at will. If in our case, for example, we had fTw == 0.75J.tgll

and fTL -= 0.46J.Lg/I , the total fT cannot be less than 0.46. Considering the fa-
vorable case, J.L -= 1. 5J.Lg/I , the reduced variate (see Fig. 4.2) is:

0 - 1.5

46~
"~ = 1.

This corresponds to a risk of 13.8 percent of rejecting (as noncomplying) a
sample that is actually complying. This is also the risk probability of accept-



ing (as complying) a sample that is actually noncomplying. The conclusion to
be drawn from the above argument is that, in some cases, testing error will
make it impossible to keep the double risk of accepting a noncomplying prod-
uct and rejecting a complying product below a certain probability value. If
as in our illustration , the purpose of the standard is to protect health , the
proper course of action is to set the specified value at such a level that , even
allowing for the between-laboratory component of test error , the risk of de-
claring a product as complying, when it is actually noncomplying, is low. If
in our illustration, a level of 5J..tg/l is such that the risk of false acceptance
of it (as complying) should be kept to 5 percent (and (h ;:: 0.46J..tg/1), then the
specification limit should be set at a value such that:

= t.

which , solved for yields 1.75 1Lg/1.

Transformation of scale

Some common transformations
Non-normal populations are often skew (nonsymmetrical), in the sense

that one tail of the distribution is longer than the other. Skewness can often
be eliminated by a transformation of scale. Consider, for example, the three

. numbers 1, 10, and 100. The distance between the second and the third is
appreciably larger than that between the first and the second , causing a se-
vere asymmetry. If, however , we convert these numbers to logarithms (base
10), we obtain 0 , 1 , and 2 , which constitute a symmetrical set. Thus, if a dis-
tribution is positively skewed (long-tail on the right), a logarithmic transfor-
mation will reduce the skewness. (The simple logarithmic transformation is
possible only when all measured values are positive). A transformation of
the logarithmic type is not confined to the function y ;:: log x. More gener-
ally, one can consider a transformation of the type:

y ;:: 

log (A Bx) (4.58)

or even

;:: C + log (A Bx) (4.59)

where C, K, A and are properly chosen constants. It is necessary to
choose and such that Bx is positive for all values. Other common
types of transformations are:

y= vx (4.60)

and

y ;:: arcsin (4.61)

Robustness
The reason given above for making a transformation of scale is the pres-

ence of skewness. Another reason is that certain statistical procedures are



valid only when the data are at least approximately normal. The procedures
may become grossly invalid when the data have a severely non-normal distri-
bution.

A statistical procedure that is relatively insensitive to non-normality in
the original data (or, more generally, to any set of specific assumptions) is
called " robust." Confidence intervals for the mean, for example, are quite
robust because, as a result of the central limit theorem , the distribution of
the sample mean will generally be dose to normality. On the other hand,
tolerance intervals are likely to be seriously affected by non-normality. We
have seen that nonparametric techniques are available to circumvent this dif-
ficulty.

Suppose that, for a particular type of measurement, tests of normality
. on many sets of data always show evidence of non-normality. Since many

statistical techniques are based on the assumption of normality, it would be
advantageous to transform these data into new sets that are more nearly nor-
mal.

Fortunately, the transformations that reduce skewness also tend, in gen-
eral, to achieve closer compliance with the requirement of normality. There-
fore, transformations of the logarithmic type , as well as the square root and
arcsine transformations, are especially useful whenever a nonrobust analy-
sis is to be performed on a set of data that is known to be seriously non-
normal. The reader is referred to. Mandel2 for further details regarding trans-
formations of scale.

Transformations and error structure

It is important to realize that any nonlinear transformation changes the
error structure of the data, and transformations are , in fact, often used for
the purpose of making the experimental error more uniform over the entire
range of the measurements. Transformations used for this purpose are called

variance-stabilizing transformations. To understand the principle in-
volved, consider the data in Table 4. , consisting of five replicate absor-
bance values at two different concentrations, obtained in the calibration of

TABLE 4. 10. ERROR STRUCTURE IN A LOGARITHMIC TRANSFORM A nON OF SCALE

Original data
(Absorbance)

Transformed data
(loglo Absorbance)

Set Aa Set Bb SetA SetB

2071 1.6162 6838 2085
2079 5973 6821 2034
1978 1.6091 7038 2066
1771 1.7818 7518 2509
2036 1.6131 6912 2077

Average 1987 1.6435 7025 2154
Standard deviation 0127 0776 0288 0199

aAbsorbance values for a solution of concentration of 50 mgldl of glucose.

Absorbance values for a solution of concentration of 600 mgldl of glucose.



spectrophotometers for the determination of serum glucose. At the higher
concentration level , the absorbance values are of course higher, but so is the
standard deviation of the replicate absorbance values. The ratio of the aver-
age absorbance values is 1.6435/0. 1987 = 8.27. The ratio of the standard de~
viations is 0.0776/0.0127 == 6. 11. Thus the standard deviation between repli~
cates tends to increase roughly in. proportion to the level of the measure~
ment. We have here an example of "heterogeneity of variance. " Let us now
examine the two sets of values listed in Table 4. 10 under the heading " trans~
formed data. " These are simply the logarithms to the base 10 of the original
absorbance values. This time, the standard deviations for the two levels are in
the proportion 0.0199/0.0288 = 0.69. Thus, the logarithmic transformation
essentially has eliminated the heterogeneity of variance. It has, in fact, "sta~
bilized" the variance. The usefulness of variance stabilizing transformations
is twofold: (a) a single number will express the standard deviation of error
regardless of the " level" of the measurement; and (b) statistical manipula~
dons whose validity is contingent upon a uniform error variance (homo~
scedasticity) and which are therefore inapplicable to the original data, can be
applied validly to the transformed data.

Presentation of data and significant figures

The law of propagation of errors (see that section) enables one to calcu~
late the number of significant figures in a calculated value. A useful rule of
thumb is to report any standard deviation or standard error with two signifi~
cant figures, and to report a calculated value with as many significant figures
as are required to reach the decimal position of the second significant digit of
its standard error.

An example

Consider the volumetric determination of manganese in manganous cy-
clohexanebutyrate by means of a standard solution of sodium arsenite. The
formula leading to the desired value of percent Mn is

( mg 200 (mt)
v(ml) . 

15(mt)
Percent Mn = 100 

w(mg)

where w is the weight of the sample, the volume of reagent, and the titer
of the reagent, and the factor 200/15 is derived from taking an aliquot of 
ml from a total volume of 200 ml.

For a particular titration , the values and their standard errors are found
to be:

= 23.

= 0.41122

200

== 939.

0040
(Tt = 0.000015

(T = 0.0040
(T = 0.0040

(J"w = 0.0060



The values are reported as they .are read on the balance or on the burettes
and pipettes; their standard errors are estimated on the basis of previous ex-
perience. The calculation gives:

Percent Mn = 13.809872

The law of propagation of errors gives:

U%\tIn =

13.8~ 

J( 

)' 

(~~;n

+( )' + ( )' + ( ~~)'

= 0.0044

On the basis of this standard deviation , we would report this result as:

Percent Mn = 13.8099; U%\tIn = 0.0044

It should be well understood that this calculation is based merely on weigh-
ing errors, volume reading errors, and the error of the titer of the reagent. In
repeating the determination in different laboratories or even in the same labo-
ratory, uncertainties may arise from sources other than just these errors.
They would be reflected in the standard deviation calculated from such re-
peated measurements. In general , this standard deviation will be larger , and
often considerably larger, than that calculated from the propagation of
weighing and volume reading errors. If such a standard deviation from re-
peated measurements has been calculated , it may serve as a basis to redeter-
mine the precision with which the reported value should be recorded.

In the example of the manganese determination above, the value given
is just the first of a series of repeated determinations. The complete set of
data is given in Table 4. 11. The average of 20 determinations is 13. 8380. The

TABLE 4. 11. MANGANESE CONTENT OF MANGANOUS CYCLOHEXANEBUTYRA 

Determination
number

Result
(Percent Mn)

Determination
number

Result
(Percent Mn)

13.81 
13.76 
13.80 
13.79 
13.94 
13.76 
13.88 
13.81 
13.84 
13.79 

Average = i =, 13.838
Sx = 0.068

S:r = 0.068/ \/20 = 0.015

13.
13.

13.

13.
13.
13.
13.

13.

13.

13.



standard deviation of the replicate values is 0.068; therefore, the standard
error of the mean is 0.068/-\120 = 0.015. The final value reported for this
analysis would therefore be:

Percent Mn = = 13. 838; S.f = 0.015

This example provides a good illustration of the danger of basing an esti~
mate of the precision of a value solely on the reading errors of the quantities
from which it is calculated. These errors generally represent only a small por-
tion of the total error. In this example, the average of 20 values has a true

standard error that is still more than three times larger than the reading error
of a single determination.

General recommendations
It is good practice to retain, for individual measurements more signifi-

cant figures than would result from calculations based on error propagation,
and to use this law only for reporting the final value. This practice enables
any interested person to perform whatever statistical calculations he desires
on the individually reported measurements. Indeed, the results of statistical
manipulations of data, when properly interpreted, are never affected by un-
necessary significant figures in the data, but they may be seriously impaired
by too much rounding.

The practice of reporting a measured value with a :!: symbol followed
by its standard error should be avoided at all costs, unless the meaning of
the:!: symbol is specifically and precisely stated. Some use the:!: symbol to
indicate a standard error of the value preceding the symbol , others to in-
dicate a 95 percent confidence interval for the mean, others for the standard
deviation of a single measurement, and still others use it for an uncertainty
interval including an estimate of bias added to the 95 percent confidence in-
terval. These alternatives are by no means exhaustive, and so far no stand-
ard practice has been adopted. It is of the utmost importance, therefore , to
define the symbol whenever ~nd wherever it is used.

It should also be borne in mind that the same measurement can have,
and generally does have, more than one precision index , depending on the
framework (statistical population) to which it is referred. For certain pur-
poses , this population is the totality of (hypothetical) measurements that
would be generated by repeating the measuring process over and over again
on the same sample in the same laboratory. For other purposes , it would be
the totality of results obtained by having the sample analyzed in a large num-
ber of laboratories. The reader is referred to the discussion in the section on
precision and accuracy.

Tests of significance

General considerations

A considerable part of the published statistical literature deals with sig-
nificance testing. Actually, the usefulness of the body of techniques classi-
fied under this title is far smaller than would be inferred from its prominence



in the literature. Moreover , there are numerous instances , both published
and unpublished, of serious misinterpretations of these techniques. In many
applications of significance testing, a "null-hypothesis" is formulated that
consists of a statement that the observed experimental result-for example,
the improvement resulting from the use of a drug compared to a placebo-is
not " real " but simply the effect of chance. This null-hypothesis is then sub-
jectedto a statistical test and , if rejected, leads to the conclusion that the
beneficial effect of the drug is " real " i.e. not due to chance. A closer exami-
nation of the nature of the null-hypothesis, however, raises some serious
questions about the validity of the logical argument. In the drug-placebo
comparison , the null-hypothesis is a statement of equality of the means of
two populations, one referring to results obtained with the drug and the oth-
er with the placebo. All one infers from the significance test is a probability
statement regarding the observed (sample) difference, on the hypothesis that
the true difference between the population means is Zero. The real.question,
of course, is related not to the means of hypothetical populations but rather
to the benefit that any particular subject, selected at random from the rele-
vant population of patients may be expected to derive from the drug.
Viewed from this angle, the usefulness of the significance test is heavily de-
pendent on the size of the sample, i.e. , on the number of subjects included in
the experiment. This size will determine how large the difference between
the two populations must be, as compared to the spread of both popu-
lations, before the statistical procedure will pick it up with a reasonable prob-
ability. Such calculations are known as the determination of the " power" of
the statistical test' of significance. Without indication of power, a test of sig-
nificance may be very misleading.

Alternat;ve hypotheses and sample s;ze-the concept of power
An example of the use of "power" in statistical thinking is provided by

our discussion in the section on sample sizes. Upon rereading this section
the reader will note that two situations were considered and that a probabili-
ty value was associated with each of the two situations, namely, the probabil-
ity of accepting or rejecting the lot. In order to satisfy these probability re-
quirements, it was necessary to stipulate a value of N, the sample size.
Smaller values ofN would not have achieved the objectives expressed by
the stipulated probabilities.

In testing a drug versus a placebo, one can similarly define two situa~
tions: (a) a situation in which the drug is hardly superior to the placebo; and
(b) a situation in which the drug is definitely superior to the placebo. More
specifically, consider a very large, hypothetical experiment in which sub-

jects are paired at random , one subject of each pair receiving the placebo
and the other the drug. Situation (a) might then be defined as that in which
only 55 percent of all pairs shows better results with the drug than with the
placebo; situation (b) might be defined as that in which 90 percent of the
pairs shows greater effectiveness of the drug.

If we now perform an actual experiment , similar in nature but of moder-
ate size, we must allow for random fluctuations in the percentage of pairs



that show better results with the drug as compared to the placebo. There-
fore, our acceptance of the greater effectiveness of the drug on the basis of
the data will involve risks of error. If the true situation is (a), we may wish to-
have only a small probability of declaring the drug superior , say, a probabili-
ty of 10 percent. On the other hand, if the true situation is (b), we would
want this probability to be perhaps as high as 9Q percent. These two probabil-
ities then allow us to calculate the required sample size for our experiment.
U sing this sample size , we will have assurance that the power of our experi-
ment is sufficient to realize the stipulated probability requirements.

An example

An illustration of this class of problems is shown in Table 4. 12. The data
result from the comparison of two drugs, S (standard) and E (experimental),
for the treatment of a severe pulmonary disease. The data represent the re-
duction in blood pressure in the heart after administration of the drug. The
test most commonly used for such a comparison is Student's test.2-5 In the
present case, the value found for is 3. , for DF = 142 (DF= number of
degrees of freedom). The probability of obtaining.a value of3.78 orlarger by
pure chance (i.e. , for equal efficacy of the two drugs) is less than 0.0002. The
smallness of this probability is of course a strong indication that the hypothe-
sis of equal efficacy of the two drugs is unacceptable. It is then generally
concluded that the experiment has demonstrated the superior efficacy of E
as compared to S. For example, the conclusion might take the form that " the
odds favoring the effectiveness of E over S are better than M to I" where 
is a large number (greater than 100 in the present case). However , both the
test and the conclusion are of little value for the solution of the real problem
underlying this situation , as the following treatment shows. If we assume, as
a first approximation , that the standard deviation 3.85 is the "population pa-
rameter" (1", and that the means , 0. 10 for Sand 2.53 for E , are also popu-
lation parameters, then the probability of a single patient being better off

TABLE 4. 12. TREATMENT OF PULMONARY EMBOLISM-COMPARISON OF Two DRUGS

Decrease in Right Ventricular Diastolic Biood Pressure (mm Hg)

Standard treatment (S) Experimental treatment (E)

Number of patients
Average
Standard deviation
Standard error of average
True mean ILl 1L2

test for H ILl J.L2, (Ho = null hypothesis)

pooled = 3.85 DF = 67 + 75 = 142 , (DF = degrees of freedom)
53 - 0.

I ~ 3.

85 ~

= 3.78(P '" 0"')002)



with E than with S is a function of the quantity defined by

(IL2 1L1)!U, In the present case:

2.53
= 0.

This can be readily understood by looking at Figure 4.3, in which the means
of two populations, Sand E , are less than one standard deviation apart , so
that the curves show a great deal of ovetlap. There is no question that the
two populations are distinct , and this is really all the test shows. But due to
the overlap, the probability is far from overwhelming that treatment E will
be superior to treatment S for a rando~ly select~d pair of individuals. It can
be shown that this probability is that of a raiu!om normal deviate exceeding
the value 

( - 

, or, in our case (- ) = -0.45. This pr~bability is
67, or about 2/3. Thus , in a large population of patients, two-thirds would

derive more benefit from S than from E. Viewed from this perspective, the
significance test, with its low "P value" (ofO.OOO~ in our case) is seen to be
thoroughly misleading.

The proper treatment of a problem of this type is to raise the question of
interest within a logical framework, derived from the nature of the problem
rather than perform standard tests of significance, which often merely pro-
vide correct answers to trivial questions.

Evaluation of diagnostic tests

The concepts of precision and accuracy are appropriate in the evalua-
tion of tests that result in a quantitative measure, such as the glucose l~vel of
serum or the fluoride content of water. For medical purposes , different types
of tests denoted as "diagnostic tests" are also of great importance. They dif-

COM PARISON OF TWO DRUGS

Standard Drug

.,0 =0.1 
Experimental Drug

)J E = 2.

Decrease in Ventricular Diastolic Blood Pressure
(mm Hg)

Fig. 4.3. Comparison of two drugs for the treatment of pulmonary disease, as meas-
ured by the reduction in right ventricular diastolic blood pressure (mm Hg).



fer from quantitative types of tests in that their outcome is characterized by
a simple dichotomy into positive or negative cases.

As an example, consider Table 4. 13, representing data on the alpha-feto-
protein (AFP) test for the diagnosis of hepatocellular carcinoma.8 What do

these data tell us about the value of the AFP test for the diagnosis of this
disease?

Sensitivity an.d specificity

The statistical aspects of this type of problem are best understood by
introducing a number of concepts that have been specifically developed for
these problems. 8

Sensitivity is the proportion of positive results among the subjects af-
fected by the disease. Table 4. 13 provides as an estimate of sensitivity:

Sensitivity ==- == 0.8411 == 84. 11%

Specificity is the proportion of negative results among the subjects who
are free of the disease. From Table 4. 13:

Specificity == 

~~~~

== 0.9816 == 98. 16%

The concepts of sensitivity and specificity are useful descriptions of the
nature of a diagnostic test, but they are not, in themselves , sufficient for pro-
viding the physician with the information required for a rational medical deci-
sion.

For example, suppose that a particular subject has a positive AFP test.
What is the probability that this subject has hepatocarcinoma? From Table

13 we infer that among all subjects for whom the test is positive a propor-
tion of 90/129, or 69.77 percent, are affected by the disease. This proportion
is called the predictive value of a positive test, or PV + .

Predictive values-the concept of prevalence

Predictive value of a positive test. -(PV +) is d~fined as the proportion
of subjects affected by the qisease among those showing a positive test. The
(PV +) value cannot be derived merely from the sensitivity and the specifici...
ty of the test. To demonstrate this, consider Table 4. , which is fictitious
and was derived from Table 4. 13 by multiplying the values in the "Present

TABLE 4. 13. RESULTS OF ALPHA-FETOPROTEIN TESTS FOR DIAGNOSIS OF HEPATOCELLULAR
CARCINOMA

Hepatocarcinoma

Test result Present Absent Total

107

079
118

129

096
225Total



TABLE 4. 14. VALVES FOR ALPHA-FETOPROTEIN TESTS DERIVED FROM TABLE 4. I3

Hepatocarcinoma

Test Result Present Absent Total

900
170

070
079
118

939
249
118Total

column by 10, and by leaving the values in the "Absent" column un-
changed. Table 4. 14 leads to the same sensitivity and specificity values as
Table 4. 13.. However , the (PV+) value is now 900/939 = 95.85 percent.

It is seen that the (PV +) value depends not only on the sensitivity and
the specificity but also on the prevalence of the disease in the total popu-
lation. In Table 4. , this prevalence is 107/2225 = 4.809 percent, whereas
in Table 4. 14 it is 1O70/3118 = 34.32 percent.

A logical counterpart of the (PV +) value is the predictive value of a neg-
ative lest, or PV 

- .

Predictive value of a negative test. ----(PV ) is defined as the proportion
of subjects free of the disease among those showing a negative test. For the
data of Table 4. , the (PV - ) value is 2079/2096 = 99. 19 percent , whereas
for Table 4. , (PV - ) = 2079/2249= 92.44 percent. As is the case for
(PV +), the (PV - ) value depends on the prevalence of the disease.

The following formulas relate (PV +) and (PV - ) to sensitivity, specifici-
ty, and prevalence of the disease. We denote sensitivity by the symbol SE,
specificity by and prevalence by P; then:

(PV+) = 

(1 SP) (1 - 

1 + 

SE 

(PV -

) = 

(1 - SE) 
1 + 

SP(1 

(4.62)

(4.63)

As an illustration , the data in Table 4. 13 yield:

(PV +) = 

(1 - Q.981~) (1 - 0.04809) -
6978 = 69. 78%

+ (0.8411) (0.04809)

(PV -

) = 1 + J~ 841J) (0.O480~
- 0.9919 = 99. 19%

(0. 9816) (1 - 0.04809)

Apart from rounding errors, these values agree with those found by direct
inspection of the table.

Interpretation of multiple tests
The practical usefulness of (PV +) and (PV - ) is now readily apparent.

Suppose that a patient' s result by the AFP test is positive and the prevalence



of the disease is 4.809 percent. Then the probability that the patient suffers
from hepatocarcinoma is about 70 percent. On the basis of this result , the
patient now bel()ngs to a subgroup of the total population in which the preva-
lence of the disease is 70 percent rather than the 4.8 percent applying to the
total population. Let us assume that a second test is available for the diag-
nosis of hepatocarcinoma, and that this second test is independent of the

AFP test. The concept of independence of two diagnostic tests is crucial for
the correct statistical treatment of this type of problem, but it seems to have
received little attention in the literature. Essentially, it means that in the
class of patients affected by the disease, the proportion of patients showing a
positive result for test B is the same, whether test A was positive or nega-
tive. A similar situation must hold for the class of patients free of the dis-
ease.

In making inferences from this second test for the patient in question
we can start with a value of prevalence of the disease (P) of 70 percent, rath-
er than 4.8 percent , since we know from the result of the AFP test that the
patient belongs to the subgroup with this higher prevalence rate. As an illus-
tration, let us assume that the second test has a sensitivity of 65 percent and
a specificity of 90 percent and that the second test also is positive for this
patient. Then the new (PV +) value is .equal to 

(PV+) = 
(1 - 0.90) (1 - 0.70)

1 + 

(0.65) (0.70)

938 = 93.

, on the other hand, the second test turned out to be negative, then the
probability that the patient is free of disease would be:

(PV -

) = - 

(1 - 0.65) (0.70)
= 0.524 = 52.4%

1 + (0.
90) (1 - 0.70)

In that, case, the two tests essentially would have contradicted each other
and no firm diagnosis could be made without further investigations.

A general formula for multiple independent tests

It can easily be shown that the order in which the independent tests are
carried out has no effect on the final (PV +) or (PV - ) value. In fact, the fol-
lowing general formula can be derived that covers any number of indepen-
dent tests and their possible outcomes.

Denote by (SE)i and (SP)i the sensitivity and the specificity of the
ith = test, where , 3

, . . . , 

N. Furthermore, define the symbols 

and Bi as follows:

A. 
(S E)i when the result of test is +
1 - (SE)i when the result of test is ~

B. 
1 -:- (SP)i when the result of test is +
(SP)i when the result of test is -



If is the prevalence rate of the disease before administration of any of
the tests , and 

pi 
is the probability that the subject has the disease after ad~

ministration of the tests, then:

P' 

== 

1 +
8t . 82, . . . )(1 

(At ' A2. 

. . . 

It is important to keep in mind that Equation 4. 64 is valid only if all tests
are mutually independent in the sense defined above.

(4.64)

Quality Control

The remainder of this chapter deals with the fundamental principles of a
quality control and quality assurance program for monitoring and assessing
the precision and accuracy of the data being processed within a laboratory.

The definitions of Quality, Quality Assurance, and Quality Control by
the American Society for Quality Control (ASQC)9 apply to either a product
or a service, and they are quoted here in their entirety.
1) Quality. The totality of features and characteristics of a product or

service that bear on its ability to satisfy a given need.
2) 

Quality assurance. 
" A system of activities whose purpose is to provide

assurance that the overall quality~control job is in fact being done effec-
tively. The system involves a continuing evaluation of the adequacy and
effectiveness of the overall quality-control program with a view of having
corrective measures initiated where necessary. For a specific product or
service, this involves verifications, audits, and the evaluation of the quali-
ty factors that affect the specification , production , inspection , and use of '
the product or service.

3) 
Quality control. 

The overall system of activities whose purpose is to
provide a quality of product or service that meets the needs of users; al~

, the use of such a system.
The aim of quality control is to provide .quality that is satisfactory,

adequate , dependable, and economic. The overall system involves inte-
grating the quality aspects of several related steps , including the proper
specification of what is wanted; production to meet the full intent of the
specification; inspection to determine whether the resulting product or
service is in accordance with the specification; and review of usage 

provide for revision of specification.
The term quality control is often applied to specific phases in the

overall system of activities, as , for example, process quality control.

The Control Chart

According to the ASQC,9 the control chart is "a graphical chart with
control limits and plotted values of some statistical measure for a series of
samples or subgroups. A central line is commonly shown.



The results of a laboratory test are plotted on the vertical axis, in units
of the test results, versus time, in hours, days, etc. , plotted on the horizontal
axis. Since each laboratory test should be checked at least once a day, the
horizontal scale should be wide enough to cover a minimum of one month of
data. The control chart should be considered as a tool to provide a " real-
time" analy~is and feedback for appropriate action. Thus, it should cover a
sufficient period of time to provide sufficient data to study trends, " runs
above and below the central line, and any other manifestation of lack of ran-
domness (see section on detection of lack of randomness).

Statistical basis for the control chart

General considerations

W. A. Shewhart, in his pioneering work in 1939 10 developed the prin-
ciples of the control chart. They can be summarized, as was done by E. I.
Grant 11 as follows: " The measured .quantity of a manufactured product is
always subject to a certain amount of variation as a result of chance. Some
stable ' System of Chance Causes ' is inherent in any particular scheme of pro-
duction and inspection. Variation within this stable pattern is inevitable. The
reasons for variation outside this stable pattern may be discovered and cor-
rected. " If the words "manufactured product" are changed to " laboratory
test " the above statement is directly applicable to the content of this
section.

We can think of the "measured quantity" as the concentration of a par-
ticular constituent in a patient's sample (for example, the glucose content of
a patient' s serum). Under the "system of chance causes, " this concentra-
tion, when measured many times under the same conditions, will fluctuate in
such a way as to generate a statistical distribution that can be represented by
a mathematical expression. This expression could be the normal distribu-
tion , for those continuous variables that are symmetrically distributed about
the mean value, or it could be some other suitable mathematical function ap-
plicable to asymmetrically or discretely distributed variables (see section on
non-normal distributions). Then, applying the known principles ofprobabili-
ty, one can find lower and upper limits, known as control limits that will
define the limits of variation within " this stable pattern" for a given accept-
able tolerance probability..Values outside these control limits will be consid-
ered "unusual," and an investigation may be initiated to ascertain the rea-
sons for this occurrence.

Contrallimits

According to the ASQC,9 the control limits are the " limits on a control
chart that are used as criteria for action or for judging whether a set of data
does or does not indicate lack of control. 

Probability limits. If the distribution of the measured quantity is
known , then lower and upper limits can be found so that, on the average , a
predetermined percentage of the values (e.g. , 95 percent , 99 percent) will fall
within these limits if the process is under control. The limits will depend on
the nature of the probability distribution. They will differ , depending on



whether the distribution of the measured quantity is symmetric, asymmetric
to the left or to the right, unimodal or bimodal, discrete or continuous, etc.

The obvious difficulty of finding the .correct distribution function for
each measured quantity, and of determining the control limits for this distri-
bution , necessitates the use of procedures that are not overly sensitive to the
nature of the distribution function.

Three-sigma limits. The three-sigma limits, most commonly used in in-
dustrial practice, are based on the following expression:

Control limits = Average of the measured quantity:!: three standard
deviations of the measured quantity

The "measured quantity" could be the mean of two or three replicate
determinations for a particular chemical test, the range of a set of replicate
tests , a proportion defective, a radioactive count , etc.

The range of three standard deviations around the mean , that is , a width
of six standard deviations , usually covers a large percentage of the distribu-
tion. For normally distributed variables, this range covers 99.7 percent of
the distribution (see section on the normal distribution). For non-normally
distributed variables , an indication of the percentage coverage can be ob-
tained by the use of two well-known inequalities:
1) TchebychefJ's Inequality. For any distribution, (discrete or continuous,

symmetric or asymmetric, unimodal or bimodal , etc.) with a finite stand-
ard deviation , the interval mean:!: Ku covers a proportion of the popu-

lation of at least I . Thus for = 3, the coverage will be at least
I - ' or roughly 90 percent of the distribution. 

2) Camp- Meidel Inequality. If the distribution is unimodal, the interval
mean:!: Kq will cover a proportion of at least 1 ~ .--!.- of the popula-

25K2
tion. Thus , for = 3 , the coverage will be at least I ~ .--!.- or roughly. 20.

percent 0 t e popu atlon~
From the above discussion , it follows that the three-sigma limits cover a

proportion of the population that is at least equal to 90 percent for non-nor-
mal distributions and is equal to exactly 99.7 percent when the distribution is
normal.

Most control charts are based on the mean of several determinations of
the same measured equality. By the Central Limit Theorem , (see section on
the normal distribution), the larger the sample size, the closer to normality
will be the mean of this measured quantity. However , since most clinical
tests are based on single or, at best, Quplicate determinations, caution
should be used in interpreting the amount of coverage given by the control
limits for those distributions that are suspected to be skewed , bimodal , etc.

Warning limits. The warning limits commonly used in practice are de-
fined as:

Warning limits = Average of the measured quantity:!: two standard
deviations of the measured quantity.

For interpretation of points falling outside the warning and controllim-
its, see the section on the control chart as a management tool.



Variability between and within subgroups

The hypothesis (T e

In control charts for variables, the variability is partitioned into two
components: within and between subgroups. To this effect , the sequence of
measurements is divided into subgroups of n' consecutive values each. The
variability within subgroups is estimated by first computing the average of
the ranges of all subgroups and dividing this average by a factor that depends
on which can be found in standard statistical tables. As an example, con-
sider the sequence: 10. , lOA , 10. , 10.7, 10. , 10.3, 10. , lOA , 10.

lOA , 10.9. When divided into subgroups of four, we obtain the arrangement:Subgroup A verage Range

10. , lOA, 10. , 10.7 10.350 0.
10. , 10. , 10. , lOA 10.375 0.
10. , lOA, 10.9 10.275 1.1

Average 10.333 0.
In this case = 4 , and the average range is = 0.63.
Generally, is a small number, often between 2 and 5. Its choice is

sometimes arbitrary, dictated only by statistical convenience. More often,
and preferably, the choice of is dictated by the way in which the data were
obtained. In the example above, the data may actually consist of three sam-
ples, each measured four times. In this case, " within groups" means "with-
in samples," and "between groups" means "between samples.

Another possibility is that there were actually 12 samples, but that the
measuring technique requires that they be tested in groups of four. If that is
the situation , the relation of between-group to within-group variability de-
pends not only on the sample-to-sample variability but also on the stability
of the measuring instrument or technique from one group of four to another
group of four. The location of the control limit and the interpretation of the
control chart will depend on the nature and the choice of the subgroup.

If the standard deviation within subgroups is denoted by (Tw, and the
standard deviation between subgroups by (TB, a control chart is sometimes
but by no means always , a test as to whether (TB exists (is different from ze-
ro). If (1"8 = 0 , then the variation between the averages of subgroups can be
predicted from (Tw (or , approximately, from R). The hypothesis (TB = 0 can
be tested by observing whether the subgroup averages stay within the con-
trollimits calculated on the basis of within-subgroup variability. Failure of
this event to occur indicates the presence of causes of variability between
subgroups. The nature of these causes depends on the criteria used in the
selection of the subgroups.

The case (T =1= O. Baseline data

In many applications , the hypothesis (TB = 0 is not justified by the physi-
cal reality underlying the data. It may, for example, already be known that
the subgroups vary from each other by more than can be accounted for by
within-subgroup variability. Thus, each subgroup may represent a different



day of testing, and there may be more variability between days than within
days. The initial set of data (baseline data) is then used primarily to estimate
both the within- and the between-components of variability, and controllim-
its are calculated on the basis of both these components (see section on com-
putation of control limits). Data that are obtained subsequent to the baseline
period are then evaluated in terms of these control lines. From time to time,
the control lines are recalculated using all the data obtained up to that time,
eliminating, however, those data for which abnormal causes of variability
were found.

Types of control charts

Depending on the characteristics of the measured quantity, control
charts can be classified into three main groups:
1) Control charts for variables (the X, R Chart). These are used for variables

such as clinical chemical determinations, some hematological parame-
ters, etc.

2) Control charts for attributes (theP-Chart). These are used for proportion
defective, proportion of occurrence of given disease, etc.

3) Control charts for number of defects per unit (the C-Chart). These may be
used for counts, such as the number of cells observed in a given area,
radioactive counts, etc.

Preparing a control chart

Objective and choice of variable

The general objectives of a control chart are: (a) to obtain initial .esti-
mates for the key parameters, particularly means and standard deviations
These are used to compute the central lines and the control lines for the con-
trol charts; (b) to ascertain when these parameters have undergone a radical
change, either for worse or for better. In the former case, modifications in
the control process .are indicated; and (c) to determine when to look for as-
signable causes of unusual variations so as to take the necessary steps to
correct them or, alternatively, to establish when the process should be left
alone,

A daily review of the control chart should indicate whether the result-
ing product or service is in accordance with specifications. For example, in
clinical chemistry, if a control chart based on standard samples shows statis-
tical control for the measurement of a given constituent, then one can pro-
ceed with confidence with the determination of this constituent in patient
samples. If the chart shows lack of control, an investigation should be start-
ed immediately to ascertain the reasons for this irregularity,

No general recommendations can be made here about the types of vari-
ables to use for quality control purposes , since they will obviously vary ac-
cording to the various disciplines of the laboratory, Considerations of this
type will be found in the respective specialty chapters of this book, The
same statements apply to the types of stable pools or reagents that should be



used, and to the methods of handling these materials in normal laboratory
practice.

Selecting rational subgroup

The generally recommended approach for the selection ofa subgroup of
data for control purposes (using a single pool of homogeneous material) is
that conditions within subgroups should be as uniform as possible (same in-
strument , same reagents , etc. ), so if some assignable causes of error are pres-
ent , they will show up between subgroups (see Duncan 12 p. 347, and

Grant l1 Ch. 6 , for further discussions).
When tests on patient samples are performed at regular intervals using

standard laboratory equipment, the subgroup becomes automatically de-
fined, since control samples are, or should be , included in each run. Other-
wise, tests on control samples should be run at regular intervals during the
day in order to detect possible changes in environmental conditions, re-
agents , calibrations , technicians, etc.

Size and frequency of control sample analyses

A minimum of two replicates should be obtained in each run of the con-
trolsample. To account for the possible effects of carryover from other sam-
ples, and to have a better indication of the capability of an instrument to re-
produce itself under normal conditions within a run, the replicate samples
should not be tested back-to-back , but should be separated by patient sam-
ples.

As indicated before, the frequency of the runs on control materials is
generally tied to the frequency of the tests on patient samples. One general
rule is to test the control samples as frequently as possible at the beginning
of a control procedure, and to reduce this frequency to a minimum of two or
three per day when the re~ults of the control chart show a satisfactory stateof control. 
Maintaining uniform conditions in laboratory practice

A properly prepared control chart will tend to reflect any change in the
precision and accuracy of the results obtained. To avoid wasting time in
hunting for unnecessary sources of trouble, care should be taken to maintain
laboratory conditions and practices as uniform .as possible. These include
sampling procedures, dilution techniques, aliquoting methods, storage meth-
ods, instrumental techniques, calculating procedures, etc. 

Initiating control chart

When meaningful historical data are not available (as is often the case
when a quality control procedure is to be initiated), a plan should be set up to
collect a minimum amount of data for each variable to be controlled during
an initial baseline period.

For a control chart for variables, with a minimum of two replicates for
each run , data should be collected for a baseline period of at least one month
in order to allow sufficient time for the estimation of day-to-day variability.



Means and ranges should be computed for each run and plotted on separate
charts. Records should be accurately kept, using standard quality control
(QC) forms that are readily available. Any value that appears to be the result
of a blunder should be eliminated , and the source of the blunder carefully
noted. It is recommended that the number of runs or subgroups be at least 25
for the baseline period.

The same considerations apply to control charts of proportions and
counts, except that the number of observations for each subgroup is gener-
ally larger than the corresponding number used in a control chart of vari-
ables. Statistical procedures for determining the sample size, for the P-

chart or the C-chart can be found in the literature (see Duncan 12 pp. 345 and
361). In general should be large enough to provide a good chance of find-
ing one or more defectives in the sample.

Determining trial contrallimits

Based on the initial set of data collected during the baseline period , trial
control limits can be determined using the procedure outlined in the section
on random samples. After plotting these limits in the initial control chart (see
section on the case (TB :1= 0), points that are outside or very near the limits
should be carefully examined , and if some valid reasons are found for their
erratic behavior , they should be eliminated and new control limits should be
computed. In general , it is better to start with control limits that are relative-
ly narrow in order to better detect future trends , shifts in mean values, and
some other types of irregularities. A common experience is that some initial
subgroups of data will not be under control but, in general, after some knowl-
edge is gained in the use of the control chart, the process will tend to reach a
state of statistical equilibrium. After this time period, one generally has an
adequate amount of data to produce realistic estimates of the mean and
standard deviations.

Computirigcontrollimits

Two variable control charts should be kept , one for the average value
and the other for the range of individual determinations in each subgroup. In
all cases in which a non-zero component for between-subgroups is known to
exist , the control limits for the chart of averages will be based on the " total"
standard deviation for subgroup averages.

If the subgroups are of size n, and if u"' and 

&- ~ 

represent the estimated
components of variance within subgroups and between subgroups , respec-
tively, then the " total standard deviation" for the averages of subgroups is

-----

A 2

0-, ~ 

&'. + 

(4.65)

This quantity can also be obtained by directly calculating the standard devia-
tion of the subgroup averages in the baseline period.

The control chart of the ranges will be used to ascertain whether the
variability among individual readings within subgroups is consistent from



subgroup to subgroup. The limits for this chart will be based on the within-
subgroup standard deviation.

Calculating the standard deviation
U sing the available data for subgroups, each of size n, we will have the

layout shown in Table 4. 15. The standard deviation within subgroups can be
estimated from

(4.66)

where

IR;R=~ (4.67)

and the value of d2 can be obtained from standard cpntrol chart tables (see
Duncan 12 p. 927). 

Values of d2 for typical sample sizes are given in the fol-
lowing table:

1.1283 1. 6934 2. 059
2.326

The value of s w can be accurately determined by pooling the variances
from each subgroup (see section on precision and accuracy). However, the
above estimate, based on the average range , is sufficiently accurate if the
number of subgroups is large enough (say, 25 or more).

The standard deviation of the sample averages is:

S, ~ 

l~(

~' 

fi' (4.68)

The between-subgroups standard deviation is given by:

S. 

JSi 

-;.

(4.69)

TABLE 4. 15. LAYOUT FOR.. CONTROL CHARTS

Subgroup Determinations Mean Range

Xn, XI2, 

. . . 

Xln
X21, X22, 

. . . 

X2n
X31o X32, 

. . . 

X3n

Xkl, Xk2, 

. . . 

Xkn



and the total standard deviation for individual determinations is:

STi = vi Sfy (4.70)

The total standard deviation for averages of daily determinations is:

JSi+ 

(4.71)

Note that is identically equal to S;x.

Gontrollimits for the chart of averages

The control limits for the chart of averages are given by:

VCL;x =x 3S;x (4.72)

and

LCL;x =x 3S;x

where VCL = upper control limit; LCL = lower control limit.
The warning limits are:

(4.73)

VWLJ: = x 2SJ: (4.74)

and

LWLJ: = X 2SJ:

where VWL= upper warning limit; L WL= lower warning limit.

Gontrallimits for the chart of ranges

Based on the three-sigma limits concept (see section on control limits),
the control limits for the chart of ranges are given by 

:!: 

3UR' Using stand-
ard control chart notation , these limits are: 

(4.75)

VCLR= D4 (4.76)

and

LCLR (4.77)

where

D4 = 1 + (4. 78)

and

D' = I - cl~ (4.79)

and the values of dz, d3, D3, and D4 are given in Natrella3 and Duncan. 1Z For
= 2 , those values are D4 = 3.267 , and D3 = O.



The warning limits for == 2 are:

UWLR == 2.512R

LWLR

== 

The numerical value 2.512 is obtained as follows:

2.512= 1 + 2 
:i:

1 + 2 

~:~i~)

Examples of average and range (X and R) charts

Initial data

The data in Table 4. 16 represent 25 daily, duplicate determinations of a
cholesterol control , run on .a single-channel Autoanalyzer I , 40 per hour. It
may appear strange that all 50 values are even. This is due to a stipulation in
the protocol that the measured values be read to the nearest even number.
The data cover a period of two months, with the analyzer run at a frequency

TABLE 4. 16. EXAMPLE OF , R CHART: CHOLESTEROL CONTROL RUN

Run Run2 Mean Range
Day Xii Xi2

390 392 391
392 388 390
392 388 390
388 388 388
378 387
392 392 392
392 390 391
398 402 400
404 406 405
400 400 400
402 402 402
392 406 399
398 397
380 400 390
398 402 400

. .

-388 386 387
402 392 397
386 390 38~
386 382 384
390 386 388

390 393
394 395

384 388 386
388 382 385
386 384 385

I = 9,810 120



of three days per week. The two daily determinations were randomly located
within patient samples. The control consisted of 0.5 ml of sample extracted
with 9.5 ml of 99 percent reagent-grade isopropyl alcohol.

Computing trial contrallimits

From the data in Table 4. 16:

= 9810/25 = 392.4

120/25 = 4.

S~ = (Ui2 - (Ui /n)/(n 1) = (3850320 - (9810)2/25)/24 = 36.5

S x \136. = 6.

The control limits for can be computed:

UCLx = 392.4 + 3(6.04)= 410.

LCLx = 392.4 - 3(6.04) = 374.

The warning limits for are:

UWLx == 392.4 + 2(6.04) = 404.

LWLx = 392.4 - 2(6.04)= 380.

The control limits for Rare:

UCLR = (3.367) (4.8) = 15.

LCLR = 0

The warning limits of Rare:

UWLil = (2.512) (4.8) = 12.

Analysis of data

In Figures 4.4 and 4.5, a graphical representation is shown of the control
charts for the mean and range of the daily runs , together with their appropri-
ate control limits.

The means of the daily runs appear to be under control. Only one point
day 9, is above the warning limit, and all points appear to be randomly lo-
cated around the central line.

The control chart of the range shows two points out of control , days 5
and 14 , al'ld one point , day 12., on the upper warning limit.

Let us assume, for the purpose of illustration , that a satisfactory reason
was found for those two points to be out of control in the range chart , and
that it was decided to recompute new limits for both the and the charts
based on only 23 days of data.

The new values are: 392. 5:r == 6. 17, andn == 23.
UCLx 392.7 + 3(6. 17) = 411.2; UWL:r 405.



CHOLESTEROL
CONTROL CHART FOR THE MEAN

(Two determinations per day)

X 410 

--------------------------------- 

UCL = 410.

..................................................................... 

UW L = 404.

400

x = 392.4390

380 ................................................................................................."......... LWL = 380.
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LC L = 374.
370

10 12 14 16 18 20 22 24 
DAYS

Fig. 4.4. Control chart for the mean, based on 25 daily duplicate determinations of a
cholesterol control.

LCL;x = 392.7 - 3(6. 17) - 374. 2; LWL;x = 380.4

The new limits for the chart are practically the same as the previous
limits.

UCLR == (3.267)(3.57) = 11.7; UWLR = 9.

LCLR == 0 LWLR 

These values establish the final limits , based on the baseline period.

CHOLESTEROL
CONTROL CHART FOR THE RANGE

R 20

---------- -------------- 

UCL =15.

12 

"""""""'" .... .......................... ........ 

................................................ LCL = 12.

R=4.

12 14 16 18 20 22 24 
DAYS

Fig. 5. Control chart for the range, based on 25 daily duplicate determinations of a
cholesterol control.



Additional data

Nineteen additional points were obtained for days 26 to 44 , running
through a period of about one-and-a-half months. The values are shown in
Table 4. 17.

Figures 4.6 and 4.7 show the results of the 19 additional data points
plotted against the (corrected) control limits based on the baseline period.

The X-chart shows two points, days 38 and 39, out of control, about 40
percent of the points near the warning limits, and a definite trend toward
large values of after day 30. There is a run of seven points above the cen-
tralline after day 37 and, in fact, if one considers day 37 to be "above" the
central line (the mean of day 37 is 392), the run of points above the central
line is oflength 12. As indicated in the section on control limits , these consid-
erationsare indications of a process out of control.

The -chart shows one point out of control and two points above the
upper warning limit; although the value of based on the 19 additional val-
ues, 4. , is larger than the previous value, = 3. , the difference is not
significant.

The ne'Y set of points taken by itself produced the following values:
= 396. = 4.32 , and Sj: = 12. , where n= 19.

Future contrallimits

It is generally desirable to have a well-established baseline set so future
points can be evaluated with confidence in terms of the baseline central line

TABLE 4. 17. ADDITIONAL VALUES FOR CHOLESTEROL CONTROL RUN

Run 1 Run 2 Mean Range
Day XiI Xi2

392 392 395
376 376 376
390 386 388
394 384 389
382 378 380
384 382 381

384 388 386
402 392 397
390 398 394
402 402 402
398 394 396
390 394 392
426 428 427
414 428 421

402 398 400
402 400 401
402 404 403
400 402 401

404 404 404

I = 7 533



CHOLESTE ROL
CONTROL CHART FOR THE MEAN,

USING CORRECTED LIMITS
(Additional Data)

390

UCL= 411.2
UWL = 405.

~O 

-----------------

400
x = 392.

.......................................................... L WL =380.

--------------------------. 

LCL = 37.4.
370

30 32 34 
DAYS

Fig. 6. Control chart for the mean , based on 19additional data points, plotted
against the corrected control limits.

and control limits. If, in the example under discussion, the additional set
(days 26 to 44) was found to be satisfactorily consistent with the baseline
data, then it would be proper to extend the baseline period by this set , I.e. , a

total of 25 + 19= 44 points. However , we have already observed a number
of shortcomings in the additional set , and the proper action is to search for
the causes of these disturbances , i.e., " to bring the process under control. "
This is of course not a statistical problem.

For the purpose of our discussion, we will assume that an examination
of the testing process has revealed faulty procedure starting with day 37.
Therefore, we will consider a shortened additional set , of days 26 through
36. The following table gives a comparison of the baseline set (corrected to
23 points as discussed previously) and the shortened additional set (II
points).

Baseline Set Additional Set

Number of points 23 
Average 392.7 389.
Average Range,R 3.57 4.
Standard deviation, SJ: 6.17 8.

By using the test , 2-5 it is easily verified that the difference between
the two standard deviations is well within the sampling variability that may
be expected from estimates derived from samples of23 and 11 points, respec-



CHOLESTEROL
CONTROL CHART FOR TH E RANGE

USING CORRECTED LIMITS
(Additional Data)

12 

------------------ ------ 

UCL= 11.8 UWL=9.
R = 3.

26 28 30 32 34 36 38 40 42 44
DAYS .

Fig. 7. Control chart for the range, based on 19 additional data points, plotted
against the corrected control limits.

tively. The difference between the averages X, is 392.7 ~ 389.5 = 3.2. A
rough test can be made to see whether this difference indicates a real shift
between the two sets. The standard error of the difference is approximately

((6. 17)2/23 + (8. 15)2/11)1 = 2.77. Thus the difference , 3. , is equal to 

1. 15 standard errors, and this is well within sampling errors.
It is therefore not unreasonable in this case to combine the 34 points of

both sets to co!lstruct a new baseline. This results in the following parame-
ters: = 34 = 391.7 = 3. 95, and Sj: = 6.93.

The new control limits are:

ForX-: VCL. 412.
LCL = 370.

For R: VCL = 12.

LCL= 

VWL = 405.

LWL= 377.
VWL = 9.
LWL = 0

U sing these new parameters, it can be noted that the points correspond-
ing to days 37 through 44 may indicate a potential source of trouble in the
meaSUrIng process.

Control chart for individual determinations

It is possible, although not recommended , to construct charts for indi-
vidual readings. Extreme caution should be used in the interpretation of
points out of control for this type of chart, since individual variations may
not follow a normal distribution. When a distribution is fairly skewed , then a
transformation (see section on transformation of scale) would be applied be-
fore the chart is constructed.



The steps to follow are:
1) Use a moving range of two successive determinations;
2) Compute R = 

-,;-;

3) Determine the control limits for X:

X :!: 3 

For n= 2 , d2 = 1.128 , and hence the control limits are:

X :t 2. 66 

4) The upper control limit for R is D4R = 3. 267 R. The lower control limit is
equal to zero.

Other types of control charts

Control charts can also be constructed based on the average standard
deviation iT, of several subgroups of sample data, or on "standard" values
of u, called cr ' in the quality control literature (See Duncan 12 Chap. 20).

Contra/ chart for attributes-ihe P-chart

The fraction defective chart is generally used for quality characteristics
that are considered attributes and are not necessarily quantitative in nature.
To use this chart, it is only necessary to count the number of entities that
have a well-defined property, such as being defective, have a certain type of
disease, or have a glucose content greater than a given value, and translate
this number into a proportion. The data used in this chart are easy to handle,
and the cost of collection is normally not very high. In some instances, the
P-chart can do the job of several average and range charts, since the classifi-
cation of a "defective" element may depend on several quantitative charac-
teristics, each of which would require an individual set of average and range
charts for analysis.

The sample size for each subgroup will depend on the value of the pro-
portion P being estimated. A small value of P will require a fairly large

. sample size in order to have a reasonable probability of finding one or more
defectives" in the sample (See Duncan ). In general , a value of n between

25 and 30 is considered adequate for the calculation of a sample proportion.

Contra/limits and warning limits

Since the standard deviation of a proportion is directly related to the
value of the proportion, an estimate p of P is all that is needed for the calcula-
tion of the central line and of the control limits.

The central line is located at the value 

p. 

The three-sigma control limits
are:

VCL. + 3 (4. 80)



LCL. ~ " - 3 

J P

where 1 - 

p. 

The estimate is obtained as follows:
Let the data be represented by the table:

(4.81)

Number of Elements
Having a Certain

Characteristic Proportion
Sample
Number Size

Total IXi Ipi

where Pi 

-;;

Average proportion:

'LPi
(4.82)

The warning limits are:

UWL + 2 

p q

(4.83)

LWL ~ P ~ 2 

J P

When the sample size does not remain constant from subgroup to sub-
group, the recommended procedure is to compute control limits using.the
average sample size. However , when a point falls near the control limits thus
calculated, then the actual limits for this point , using its own sample size,
should be estimated before a conclusion is reached about its state of controL

(4.84)

Control charts for number of defects per unit -the C-chart
In some instances, it is more convenient to maintain control charts for

the number of defects per unit , where the unit may be a single article or a
subgroup of a given size. The " number of defects" may be , for instance, the
number of tumor cells in an area of a specified size, the number of radio-
active counts in a specified period of time, etc. In all these instances, the
probability of occurrence ora single event (e. , an individual defect) is very



small, but the unit is large enough to make the average number of occur-
rences (number of defects) a measurable number.

The Poisson distribution
It can be shown that, when the probability P of an event is very small

but the sample size n is large, then the distribution of the number of occur-
rences c of this event tends to follow a Poisson distribution with parameter
nP= The mean and standard deviation of care:

E(c) = c (4.85)

(4.86)(Fe 

The random variable c represents the number of defects per unit, the
number of radioactive counts in a given period of time, the number of bacteria
in a specified volume of liquid, etc.

Controllimits. The upper and lower limits are given by:

UCL =c + 3 "";t (4.87)

LCL = C - 3 ....;T (4.88)

Here c is the average number of defects , or counts, obtained using a suffi-
ciently large number, k, of units. c is a sample estimate of the unknown , or
theoretical value c

' . 

The warning limits are:

UWLc = c + 2 

"";.

= c ~ 2 "";c

(4.89)

(4.90)

Detecting lack of randomness

If a process is in a state of statistical control, the observations plotted in
the control chart should randomly fall above and below the central line, with
most of them falling within the control limits. However, even if all the points
fall within the upper and lower control limits, there might still exist patterns
of nonrandomness that require action, lest they lead eventually to points
outside the controllimits..Procedures for detecting such patterns will be dis-
cussed.

Rules based on the theory of runs

The most frequent test used to detect a lack of randomness is based on
the theory of runs. A run may be defined as a succession of observations of
the same type. The length of a run is the number of observations in a given
run. For example, if the observations are classified as or b, depending on
whether they fall above or below the mean, then one set of observations may
look like:

aaababbbaab
Here we have six runs , of length 3, ' I, 1, 3 , 2 , 1 , respectively.



Another criterion for the definition of a run would be the property of
increase or decrease of successive observations. Such runs .are called " runs
up and down. For example, the sequence 2 , 1.7 , 2. , 2. 5, 2.8, 2.0, 1.8 , 2.

5, has three runs down and two runs up. In order of occurrence, the

lengths of the runs are 1 , 3 , 2, 1, 1.

Returning to runs above and below the central value, it is possible
through use of the theory of probability, and assuming that the probability is
one-half that an observation will fall above the central line (and , con-
sequently, one-half that it will fall below the central line), to determine the
probability distribution of the lengths of runs. Tables are available for sever-
al of these distributions (See Duncan, 12 Chap. 6). Some rules of thumb based
on the theory of runs that are very useful in pointing out some lack of ran-
domness are:

1) A run of length 7 or more. This run may be up or down, above or below
the central line in the control chart. (For runs above or below the median
the probability of a run of length 7 is 0.015.

2) A run of two or three points outside the warning limits.
3) Ten out of 11 successive points on the same side of the central line.

Distribution of points around the central line

When a sufficient number of observations is available, the pattern of
distribution of points around the central line should be carefully examined.
In particular, if the points tend to cluster near the warning or control limits,
or if they show characteristics of bimodality, or if they show a pronounced
skewness either to the left or the right , then the assumption of normality will
not be satisfied and some transformation of scale may be necessary.

Interpreting patterns of variation in a control chart

Indication of lack of control
A process is out of control when one or more points falls outside the

control limits of either the or the R-chart, for control of variables, or out-
side the limits of the P-chart, for control of attributes.

Points outside the control limits of the R-chart tend to indicate an in-
crease in magnitude of the within-group standard deviation. An increase in
variability may be an indication of a faulty instrument which eventually may
cause a point to be out of control in the x-chart.

When two or more points are in the vicinity of the warning limits, more
tests should be performed on the control samples to detect any possible rea-
sons for out-of-control conditions.

Various rules are available in the literature about the procedures to fol-
low when control values are outside the limits (see, for example, Haven

Patterns of variation
By examining the and R-charts over a sufficient period of time, it may

be possible to characterize some patterns that will be worth investigating in
order to eliminate sources of future troubles.

Some of these patterns are shown in Figure 4.
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Fig. 8. Four patterns of variation in an X-chart.

The control chart as a management tool

As indicated in the ASQC definition of quality assurance, " . . . The sys-
tem involves a continuing evaluation of the adequacy. and effectiveness of

the overall quality-control program with a view of having corrective meas-
ures initiated where necessary. . .

The key words, "continuing evaluation" and "having corrective meas-
ure initiated " indicate the essence of a quality control program. It is impor-
tant that the results of the control chart be subjected to a daily analysis in
order to detect not only the out-of-control points but also any other manifes-
tation of lack of randomness as shown by a time sequence of daily observa-
tions. It is always better and more economical to prevent a disaster than to
take drastic measures to cure one. Since each test method should be sub-
jected to quality control , the control charts should be prominently displayed
at the location where the test is performed, not only to facilitate the logging
of results as soon as they are obtained but also to give the technician respon-
sible for the test an easy graphical representation of the time sequence of
events. In addition , preprinted forms containing the relevant classification
should be available for easy recording of information such as names, dates,
time of day, reagent lot number, etc.

When all the pertinent data provided by the control charts are available,
the supervisor, or section manager, should have all the meaningful informa-
tion required to take corrective measures as soon asa source of trouble has
been detected. Monthly or periodic review of the results, as performed by a
central organization with the aid of existing computer programs, is impor-
tant to provide the laboratory director with an important management tool,
since the output of these programs may include such items as costs, inter-
and intra-laboratory averages, historical trends, etc. However , as pointed
out by Walter ShewhartlO and other practitioners of quality control , the most
important use of the control chart occurs where the worker is, and it should
be continuously evaluated at that location as soon as a new point is dis-
played on the chart.
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