
NBSIR 79- 1752

On Characterizing Measuri.
Machine Geometry

R. J. Hocken
B. R. Borchardt

National Engineering Laboratory

National Bureau of Standards
Washington, D.C. 20234

Final

May 1979

Issued June 1979

S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS



NBSIR 79- 1752

ON CHARACTERIZING MEASURING
MACHINE GEOMETRY

R. J. Hocken
B. R. Borchardt

Nationai Engineering Laboratory

National Bureau of Standards
Washington, D.C. 20234

Final

May 1979

Issued June 1979

s.. DEPARTMENT OF COMMERCE. Juanita M. Kreps. Secretary
Jordan J. Baruch, Assistant Sflcretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director



ON CHARACTERIZING MEASURING MACHINE GEOMETRY

R. J. Hocken and B. R. Borchardt

ABSTRACT

We present a simple method for removing axis

nonorthogonality and checking f~r length dependent scale

errors in two--dimensional measurements. Use of this

method requires that a two--dimensional master gage (ball

or grid plate, for example) be measured in two positions

which differ by a rotation of the plate 900 with respect

to the measuring machine axes. The method is similar to

that proposed by Reeve (1) but requires only linear least

I squares fitting on a small computer.

INTRODUCTION

Typically two-dimensional standards consist of a plate with either a

grid of lines deposited on the plate or an array of spheres attached to

the plate. The goal of a two-dimensional measurement is to obtain the

array of coordinates of either the line intersections or the ball centers.

This measurement is usually done on a coordinate measuring machine where

either the plate, some locating device (microscope or LVDT probe), or a

combination of the two, both gage and indicator , is moved. The coordinates

are read from scales attached to the axes of motion.

In a perfect system this process gives the true coordinates, but in

practice the motions are never truly rectilinear , the scales on the two axes

are not identical, and the axes of motion are not orthogonal. The purpose



of this paper is to describe a simple technique for checking for scale

errors and nonorthogonality errors and removing such systematics from

the measured coordinates. In this treatment it is assumed that the

motions (x and y) are linear; thus straightness errors and errors due to

yaw are assumed zero. (2 ) This measurement proceeds as follows. The

plate is placed on the machine table and o~iented so that its axes are

aligned, as well as possible, with the machine axes. The coordinates

are measured and normalized so that the specified plate origin has

coordinates (0, 0). The plate is then rotated 900 , either clockwise or

counterclockwise, and the coordinates remeasured. (This rotation must

be within about 10 see of 900 for the algorithm to work. T en seconds is

the equivalent of 0. 0005 inch in 10 inches of travel, a figure well

within the capability of any good measuring machine. Again, the results

are normalized so the plate origin has coordinates (0, 0). The two sets

of coordinates are inputs to a linear least squares fit which estimates

the nonorthogonality, the scale error, the difference between the actual

rotation and 900 , and the average x and y offsets between the two sets

of coordinates. From these results the nonorthogonali ty can be removed

and the scale differences either averaged or removed, if there is some

pressing reason to trust one scale over the other. (For instance, one

might use a laser interferometer for one of the scales and the machine

lead screw for the other.

CALCULATIONS

Suppose the gage points on the plate can be specified by a set of

vectors (X. ) which are the " true" coordinates. Then call the measured



set of N vectors in the first position (aligned with the machine axes)

' The first set of measured vectors are related to the true vectors

by a matrix transformation, That is

' .

= A X. ; i = 1, NJ. = - (l)
where A is a matrix which describes the machine geometry.

' .

We call A the

machine metric, For a two-dimensional measuring machine, there are

several possible and equally sensible choices for One choice is,

=(:"

which describes a machine with scales which are equal but in which the

(2)

axes are nonorthogonal by an amount a. (a is in radians and is assumed

not to be more than a few microradians). This is the metric chosen by

Reeve (1) in his original paper On "multiple redundancy , though he does

not use the same language to express his results. The machine metr'c in

(2) is written so that the x axes of the gage and machine are aligned

and the y axis of the machine is at an angle 900 -a. This choice is

arbitrary. A slightly more complicated metric one might sensibly choose

is:

e:y ~)
(3)

Here y is a small .error term that is included to take into account the

fact that the scale for the x axis may be different than that for the

y and that one trusts the y scale more. An equivalent representation,

trusting the x scale, would be

=::::y

\0 l-
(4)



Either of these forms can be built into the model described, Suppose,

however, one believes the scales are different, by an amount y, but one

has no idea which scale should be trusted most. In this case one should

choose a matrix that has symmetry in the scale error. A reasonable choice

is:

1+ -40
(5)

It is shown in Appendix B, that all three of these forms, eq. 3, 4, and 5,

yield identical relationships between the coordinates measured in positions

1 and 2, though not identical "best" values for the coordinates. The

reason for this is simply that the numbers themselves cannot ever contain

information about the true choice of scale since this is arbitrary and de-

cided by law rather than nature. Thus, only the differences between scales

may be ascertained and which one is to be termed "correct" is entirely the

decision of the metrologist. Since the three more general forms for the

machine metric, eqs. 3, 4, and 5, yield the same observational equations,

we can work equally well with only one of them.

Beginning then with A , we have, from equation 1, the set of vectors
::::x

(coordinates) measured in the first position. They. are:

. = A X.,). -x- i = 1, N (1)

The set of vectors measured in the second position is given by

X~ = A B X.,

-). 

::::;x: 

= -

i = 1, N (6)

where B is the finite rotation matrix,

B =
( cose sine\

~.ina co.a
(7)

where e 

'" 

2 .



The order of and is important, because and do not commute

(1. e. 

:/: 

BA) The logic behind (6) is straightforward. The true

coordinates .after rotation are:

=B X.,'-:L = '-:L
i = 1 , N (8)

and when these coordinates are measured on the machine the numbers obtained

are:

X' - A X - A B X.,-2i - ::::;x: -1.B - 

= -

Equations (l) and (6) may be combined to yield

i = 1, N (9)

X' :::: A B 1 A-I X'-Ii ::::;x: ==x 
which is the basic observational equation.

i = 1, (10)

Here the data, measured co-

ordinates in the two positions, are related by an equation which involves

the machine parameters, a and y, and the rotation angle 

Equation (19) would be exactly true in the absence of error. In a

measuring machine, there are, however , many errors and equation (10) is

only true on the average. Also, because of the way we usually make measure-

ment~ there is probably some linear offset, independent of the machine

metric, between the origins in positions 1 and The normalization procedure

commonly used, that of subtracting the readings at the reference coordinate,

systematically biases all measurements with the error in that one reference

point measurement. This bias can be assessed by including in equation (10)

an offset vector ~, which is assumed small, so that

:::: A . + 8,:::::x= 

~ -

i= 1, N (11)

It is easy \:0 show that since ..f. is infinitesimal, A 8=8, so that its in-::::x:- 

troduction at what appears to be the last minute is mathematically sound.



We now simplify equation (ll) by noting that the finite ' rotation

matrix (6), where e = TT /2 + 13, reduces to an "infinitesimal" type of

matrix. That is

B =
cos 13)

,....

(12)

13) cos

if one neglects terms in 13 Also, to the same order , the inverse of B is

1 = 

~:)

(13)

and the inverse of A 
::::;x:

:::: 

Y "
::::;x: 0 (14)

With these first order qpproximations, the observational equations become:

xii :::: -(I3+a) Xh -- (l-

. + ). 

(15a)

and

Yii :::: (l- X2i + (a-l3) . + 8 ( l5b )

where we have performed the matrix multiplications indicated .in equation

(11) . (We emphasize here that equation (15) is exactly the same for any of

the three choices of , equations (3), (4), and (5), mentioned previously.

To obtain a best value for the parameters (a, l3,y, e: , e: ) we must choosex y

them such that, on the average, equations (15) are satisfied. To do this,

we introduce a modified form of the traditional chi-squared which we define

as follows:

:::: 

-L- 

2N-5 i=l,
(Xii - Xli (calc) ) 2 + (Yli

Y ii (calc) ) (16)



where Xli (calc) and Yli (calc) represent the right hand sides of equations

(15a) and (15b), respectively. A best value for the parameters will occur

when the quantity chi-squared is a minimum, and furthermore, ~hi-squared

at this minimum is just the rms standard deviation in the coordinates.

(We assume here that the random errors in the x and y measurements are

independent with mean 0 and variance cr

We obtain the equations for the minimum in chi-squared by partial

differentiation of equation (16) with respect to each of the five para-

meters, setting these derivatives equal t.o zero. A resulting system of

linear equations is:

! = 

(17)

where D is a 5 x 5 matrix and and C are column vectors. Let us denote

the sums which form the matrix elements of ~ by dropping the i subscript,

the prime and the summation sign.

Then:

D =

2 Y 2

(lOa)

where, for example, X~ = 
i=l

XZi 2 and X 2 = L: XZiYZi
i=l



Similarly,

c =

and

x; - Y; - Xl Y Z - Y 1 X

Z - Y Z

z - Y

-x - 

z - Y 

p =

(18b)

(18c)

The solution to equation (17) may be obtained by inversion of the

matrix , or, because of the low order of the matrix , by Kramer s rule.

The latter method is that used in the computer programs given in the

appendices.

Let us now suppose we have obtained the solution to equation (17),

i. e., we have the best fit values of a, S, y, 8 and 8 as well as the



value for chi-squared. Using these parameters we can calculate a value

for the " true" coordinates. The equations are:

= A
-I X'-i - ( 19a)

and

X. = B
l X' . .f'.

'-:1.

= = 

-2). (l9b)

A resulting "best" value for the coordinates may be obtained by a

simple average; that is:

where we have

-"t = 
A -

1. 1'li + 
B - A .

1. 

already subtracted a factor ~ in order

(20)

that the re-

ference point have coordinates (0, 0). t In this calculation of the best

values for the coordinates the result is no longer independent of the choice

of , unless y is zero. Here the metrologist must decide which of the three

forms to use and this decision can only be based upon prior information or

intuition. (The computer program given in the appendices has the option

for using any of the three forms. The set of coordinates X. , are still
'-:1.

probably not in the desired system as they are in a coordinate system

aligned with the machine axes. They are put into the preferred gage system,

which usually has one point with a large X coordinate which is specified

to have a zero Y coordinate, by a simple rotation. If care was taken in

the initial alignment this rotation will be small , but this is not a

tSince the vector ..f. does not appear in the final solution for the coordinates
its introductio~ may be unnecessary. This, however , would be difficult to
prove as the coefficients for 8 and 8 do appear in the solutions for the-x -
other parameters



necessity for the algorithm to work. All that is required is that

positions 1 and 2 differ by a rotation that is within about 10 see of 900

RESULTS

This algorithm was checked in two different ways. Tpe first check

consisted of trying the program on data wh~ch was computer generated.

This data is shown in Table 1 which includes the " true" values, the

two sets of coordinates as seen in two positions nearly 90 degrees apart

fitting the data (using option 3, i.e. , splitting the metric error).. The

slight disagreements between the computed coordinates and parameters and

the " true" values are interpreted as stemming from the truncation of the

data at the microinch level. Also shown are the results of Reeve ' s pro-

gram applied to the same data.

Some testing of this algorithm has also been done on real data obtained

from the NBS 2-D ball plate measured on our Moore 5-Z coordinate measuring

machine. If the scale error (y) is set equal to zero the values obtained

agree well with those obtained from using the full multiple redundancy of

Reeve. These numbers are presented in Table 

CONCL US IONS

It appears that this algorithm can be a valuable and relatively simple

tool for uncovering and correcting for simple errors in machine geometry.

Its advantages when compared with the complete multiple redundancy of Reeve

are three-fold. First, it is simple enough to be programmed on a small

computer, if the machine has the capability of double precision



arithmetic. * Secondly, this algorithm includes a provision for assessing

scale errors and, thirdly, the measurement method required coincides

wi th techniques usually used by the operators of measuring machines.

the negative side, this method is definitely less flexible in terms of

what kinds of measurements it requires; the desire to keep the program

small enough for a minicomputer leads to necessarily stringent require-

ments on alignment to keep our approximations valid. Also, this method

requires fewer measurements than the original algorith1ns which may

prevent the averaging of other errors that is inherent in full multiple

redundancy and the statistics used are certainly of an ad hoc nature.

The fact that it gives the same answers and standard deviations as the

more powerful method assures us somewhat on this latter point.

In order to make this technique more useful to a variety of measuring

machine users, .a program using the simple metric , equation (2), and a

program with the option of choosing one or all of the other three, are

provided in the appendices, They are in double precision Fortran of a

vintage suitable for most compilers. The program for the metric described

in the text is in Appendix D, while Appendix C contains a program for a

simpler metric and Appendix B the proof that the observational equations

are the same for any of the three matrices, equations (3), (4), and (5).

*Least square fitting of this type requires taking differences of
very large numbers which are often very similar in value. In coordinate
measurement so many significant figures are required and differences are
so small, it .is doubtful that any of the programs described would work
in single precision.



Table 1. Results of Pr.o grams Applied to Computer-gener.ated Data.

True Values
000000

l2. 5264 7l

141597

132671

12. 026450

6. 936245

12. 137425

1. 110020

9. 735164

000000

. 000000

674327

11. 989642

13. 777777

7. 216943

873462

3. 762542

164785

Parameters (XIO

Alpha

Beta

Gamma

offset
offset

Sigma

-131. 26

13. 70

-14.

Raw Data
Posi tion Posi ticm 2

000000 . 000010

12. 526643 . 001604

141647 2. 674759

132702 11. 989814

12. 026648 13.'179498

936358 7. 217926

12. 137615 9. 875151

111044 3. 762727

735305 3. 166073

000000

000091

674304

11. 989641

13. 777683

216893

873374

3. 762534

164715

000014

12. 526485

-3. 141279

- .

l31l98
-12. 024755

-6. 935364

12. 136215

-1.110568

734786

ALBE 3
Results
Option ~

000000 
12. 526471

141597

132671

12. 026449

936245

12. 137425

1. 110020

735164

000000

000000

674327

11. 989642

13. 777770

216943

873462

762542

164786

-131. 24

13.

-14.

Reeve
Results

000000

12. 526557

141619

132674

12. 026532

936293

12. 137508

1.110028

735231

000000

. -

000000

674346

1l. 989724

13. 777864

216993

873530

762568

164807

-133.

-13.
10.

57.

All dimensions are in inches and angles are in radians. Gamma is
dimensionless.



Table 2. Results of Programs Applied to Real Data

ALBE
Raw Data Resul ts Reeve

Position Position tion Results

. 000000 000000 000000 . 000000

-3. 000912 998718 -3. 000864 -3. 000868

000640 10. 999142 -2. 000515 -2. 000517

-4. 000689 13 . 998858 000532 000537
. 0

000163 14. 999467 000000 . 000000

-8. 001243 1. 998189 -8. 001196 --8. 001207

001024 998378 000930 -6. 000939

-9. 001392 998041 -9. 001258 -9. 001270

- 7. 000838 12. 998368 -7. 000682 - 7. 000692

15. 002162 996753 -15. 002l07 15. 002129

-13. 001803 997135 -13. 001700 -13. 001718

12. 001441 997590 --12. 001292 -12' 001309

14. 002280 14. 996517 -14. 002106 -14. 002125

. 000000 . 000000 000000 000000

999098 3. 001472 999145 999151

10. 999378 002176 10. 999406 10. 999422

13. 999388 002653 13. 999428 13. 999447

14. 999390 002266 14. 999408 14. 999429

1. 999283 001495 1. 999381 1. 999384

999186 001825 5.. 999259 999268

999253 002606 999363 999376

12. 999295 002651 12. 999380 12. 999398

998845 15. 002257 999012 999014

998944 13. 002443 999086 999092

999228 12. 002806 999367 999381

14. 998424 14. 004399 14. 998583 14. 998604

Parameters (XIO

Alpha
Beta
Gamma

offset
offset

Sigma

-141. 27

-14.
-17.

16.

-141. 50

17.



APPENDIX A: A THREE PARAMETER FORM

A simple form for the machine metric is that described in the text, that

+y-a

-- 

(AI)

This metric can be used and a simpler computation (with a shorter program)

done by neglecting the offsets 8 and 8 . The observational equations are

then

xii = --(S +a) X2i - (1+Y) Y;i (A2a)

and

~ = (l-

y) + 

(a-S) Y (A2b)

The linear equations at the minimum in chi-squared are:

2 Y 2

(A3)

A Fortran program for the solution of A3 appears as Appendix C 

Table Al shows the results of the program on the dummy data described in

the text.

Table Al also shows the results on the real ball plate data previously

descrihed, and comparison of these results with those obtained using

Reeve s full multiple redundancy. The large standard deviation in the Reeve

result on the dummy data is due to the inclusion of a length scale error, y,

of 13. 7 ppm when the data were generated.



Table AI. Results of Programs Applied to Computer-generated Data , with
Offsets E and E Neglected. *

ALBE 2 Results
on DummY Data

Reeve
Results

. 000007

12. 526483

141604

132673

12. 026455

936251

12. 137433

1. 111026

9. 735171

. 000000

12. 526557

141619

132672

12. 026532

936293

12. 137508

1. 111028

735231

000005

000000

674324

11. 989642

000000

- . 000000

674346

11. 989724

13. 777864

216993

873530

762568

164807

13. 777775

216943

873466

762539

164785

Parameters (10-6 inches or radiams)

Alpha
Beta
Gamma
Sigma

-130.
12. 99

133.

57.

ALBE 2 Results
on Real Data

000000

-3. 000862

-2. 000514

-4. 000530 '

000000

-8. 001193

-6. 000928

-9. 001253

- 7 . 000678

-15. 002101

13. 001694

.. -12. 001287

-14. 002099

000000

999144

10. 999401

13. 999422

14. 999401

1. 999381

999257

999460

12. 999374

999012

999084

999362

14. 998577

-140.

17.

Reeve
Results

000000

-3. 000868

-2. 0005l7

000537

000000

-8. 001207

-6 . 000939

-9. 001270

-7. 000692

-15. 002129

-13. 001718

-12. 001309

-14. 002125

000000

999l51
10. 999422

13. 999447

14. 999429

1. 999384

999268

999376

12. 999398

999014

999092

999381

14. 998604

-141. 50

17 .

All dimensions are in inches and angles are in radians.



Appendix B

EQUIVALENCE OF THE OBSERVATIONAL EQUATIONS FOR THE THREE FORMS OF METRIC

ERROR.

Three logical choices for a machine metric with scale errors were given in

the text. They were

and

= (~~ -

f.y = (~

y )

~1 

(Bla)

(BIb)

(Blc)

The basic observational equation is, in matrix notation,

' = A .B.
I A I X

' + 8 = ~ + 8-Ii = 
(B2)

To show that the three metrics above yield the same observational equations

we need only to show that

C = A B -1 A I = A B-1 A 
= A B

1 A=x= =x 

=y= =y ==

(B3)

For the case where the metric is given by A we have already shown in the

text that

~ (;1
-(l+y) )

a- 13 )
(B4)

when

f-s
-13



The inverse forms for A and are

==y==y

and

~Y / 2

~+y

(B5a)

~/2 (B5b)

Substitution of either (B5a) or (B5b) into (B3) will yield , to first order

in the parameters, , as given in equation (B4).



AppencLix C

,J b r: 0 L. 1 fJ E AL.3 2: C ( x . 'f .. G . S I G;Y, A. IN P '3 )

C X At.JD Y ARE THE ARRAYS FOR THE Cl..TtI. THE Fli=--ST SJSf:CRIP7 It'- Et.CH
C IS JSED TO ceTE~MINE ThE PDS1TICN OF THE GAGS (1 OR 2). pas 2

IS ABOJT 9~ CEGREES CLCCK", I SE.. V I LI'! ED FRO"'1 THe:. TO? FRUl-1

C POSITION 1.
G i. 1 ) :::NONOi-1THCGONALI TY ANGLE. 1 N R AD! ANS

C G(2),=kCTATICN DIFFEkENCE FRO;" 9C' DEGREES. RADIANS
~13):::METr:IC ER~O~ (ASSUMED E~,J'L EET~EEN X AND Y)
SIGMA=RMS STANDAHD O~VIATICN IN COORDINATES. JNITS ARE THE SAMS
AS THCSE USEO IN x A~D Y.. M~LTIPL1EC ~Y lEO6.
NPTS=NUMBEF. OF GAGE POINTS rJlEASljkLD. DIi"'ENSI\JNEp Fa.~ So

IMPLICIT DCUdLE PRE.CISION (A-H, O-Z)
D IMENS ION X (3. 50 J . Y (3. 6) ) . A (~ ,

~ ) . 

t 3 .31 . C ( 3 ) . G ( 

SEi SJMS C ZERO

Y22=c..
X22='J .0;)
XY12=O.
XY21:::0.
XY22=:.
XX12:::C.OC
YY12:::0.
DO 100 1::: 1 . NPT S
Y22=~22+vt2. I )..2
X22=X22+Xt 2. I )*~2
XY12=XY12~X( 1. 1 )*V(2.
XV21=XY21+X(2. 1)~Y(1. I )

X Y 2 2 = X Y2 2 + X ( 2.. I ). Y I 2 ~ I )
x X 1 2=X~ 12 + X ( 1 . I ) . x ( 2.. I )
YY12=YY12+Y( I. 1*Y!2.1 ~ -...... .,J

SET UP MATt.: I X

A(I,l)=c..
A(1. 2)=2. D;,;*XY22

( 1 .. ,3 ):::Y .:; 2 + X2 2
td2.. 1)=X22
A(2. 2)=X22
A (2..3 )=XY22
A (.3. 1 )=-Y22
A ( 3 .. 2 ) =Y 2 2
A(.3. .3)=XY22
C ( 1 ) =- t X Y 1 2 + x Y 21 + y 

;:: 

2- X 2 2 )

C ( 2 ) =-), x 1 2 - X Y 22
C (3 )=-y,\, 12+XY22

...

03 CALCULAiES uETER~I~~NT OF 

DD=D3 ( A)
I~ MATRIX IS 5INGULA~.. ~RI~' ME~EAGE

IF(DD. Ea. D~) ~PITE(6. 2J)
DO 15) 1=1..
DO 120 J=l.

::"

DC 12-:' 1'.=1.



120 i)( J. K )=A (J.K)
DC 130 L=1.
D(L. l)=C(L)
G ( I ) .::D3 ( 0 ) /i)O

130
15~

,..

CALCULATE G(~) THHDUGH G(3) FaR RE~0RN TO MA1N PRCGR~M

(OMPJTE CHI SQUAKC

20':'

CHI50=;;.
DO 2('0 I=1. NPT5
XC=- (G ( 1 )-+ G (2) ) "'x (2. I )-( 1. ~ ':'+G (3) ) "' Y ( 2. I )
Y C = ( 1 .00- G ( .3) ) * x ( 2. I ) + ( G ( 1 ) - G ( ~ ) , * Y ( 2 . 1 )
CHISQ=CHISO+( X( 1. I)-XC )"*2+( Y U. I )-YC) *"'2
X (.3. 1 ) =( X ( 1 d ) +XC ) ,.. ( 1 . 0 ;j-G ( 3) ) /2.00+ ( Y (1. I ) +YC p;.':; ( 1 ) / 2.
Y (.3. I )= ( Y ( 1. I ) -+ YC ) / ~. D 0

CONTI NUE
FREE=2. 0 ~~NPT 5-3. D:
51 GMA= 1. D+C6rDS aRT (CH I SG/FRtE)
FORMAT(lX. ' ~ATP1X OF CGE. IS SINGULAkt)
RETURN
END
FUNCTION D3(A)
IMPLICIT REAL*8 (A-~. O-Z)
DIMENSICN ;..(3.
03= A ( 1.1 ) =A (2. 2) ,,: A (':'. 3) +A ( 1 . 2) *A (2.3) ".A (.3. 1 ) + A ( 1 .::3 ) * A (2. 1 ) ., A ( .3 ,2)

(- A ( .3. 1 h A ( 2. 2) .. to t 1 . 3 )-A (.:. . 2 ) *- A ( ;2 . .3 ) ... A ( . 1 ) - A ( 3. 3) -:c:. A ( 2, 1 ) '" to. ( 1. 2 )

kE TURf\;
END



Appendix D

5U2~C~TINE AL~E2( X, y. G. SIG~A. NFTS. NOPT)

c X A~~ Y Ak~ ~rlE ~~~AY5 F~~ THe DATA~ ThE Fl~S~ SUBSCRJPT I~ t~CH
IS USE~ TO DCTEW~INE T~C PCSITIDN OF THE GAGE (1 c~ 2). ?OS 2
IS A~GJT 9C CEG~~ES CLCCK.I SE. VIEwEU FRD~ ThE TO~. FkOM

C PC'::;ITION 
~(1 )=~CNORThCG0~ALIT~ ~NGLE. R~UIANS
~(2):RCTATICN uIFF~H~NC~ F~O~ 9~ uEGREtS. RAOIANS

c G(31=MET~I: ~~~OR
G (4 I = X-OFF SET

:: 

G (:5) =Y-OFFS:::T
SI(;,v,A=RMS ST.'\i-,J()AR':; IJEVIATiiJN IN CDOPDII-.JATES.

AS THOSE ~SED I N X ~~O
!-./Q:-S=NUtoljeER OF GAGE" PUINTS MEASURt:.:,)~' PIMENSluNED FOR 5,
NGPT=CPTI eN Te CHCOS!::. FG~M CF S:hLE EP~O~:

l=ALL E~kG~ IS IN X AXIS
2=ALL E~hOh IS l~ ~ tXIS
3=E~RaR IS SPLIT BCT~F~N X ANJ Y AXIS
4=THERE: IS NC ME:.Tf;rC E;;:;~O~,

0NI T 5 ARE:. THE SA~E

,.......

l~~LICtT OCJ~LE P~ECISIC~ (A-H. C-Z)
DIME~SIC~ xr~. ~JJ . Y(3. S2), 4 (~, S) . D(S.~l.C(t), G( 51

Sc T S '..t-1S T O Z E h 0

~ -

0 N = NP T S

1 F ( N C P T- 2) t 0 , c 1 ~ 
OPT:l. O:'
GO TO 

~ 1 CIPT=:J. D,,)

", -,

GO TO (;3
UP; =0. :::OQ

c , CO!'"TINUE
Xl=
Y 1= :; . O;J
Y2-=....
x ~=':;. 0:'

::2=J..
X22=c..
XY12=J.
XY2l=:. D')
XY22,

=': .

0',)
XXl~=C.
YY12::0.

:YJ S Jr,t,S NE~,)(D

:J :J 1:'0 I-=l. I'.P""S
x 2= x;::.. x ( 

::: , 

i )

Y2=Y2+Y(2. .I)
X 1=;:1+X( 1.
Yl-=Yl+Y(l.
Y22="YZ2+Y(Z. I ):"~
X 22 = X 22+ X ( 2. 1 ) ~ ~ 2
X':'12=XY12+x( 1, I )"'Y(2. I)
XY21=XY21~X(2, I)nY(1. 1 )
XY2;;':::XY~2-+X(2. I I"'Y (2. 1 )



1 DO

1 :;:,

15::

XX12-=XX12+X( 1. 1 )"'X(2.1)
Y Y 1 ~= y~ 12+ Y ( 1 t I ).Y (2. I )

SET UP MATkl X FD~ SCLUTIC~

12,)

A ( 1 . 1 ) =0 . DO
A (1..2)=2. DCr::rXY22
to ( 1 . :3 ) =Y 2 2 + X::' 2
A(l, 4)=-Y2
A(1. 5)=-X2
A(2. 1)=XZ2
A (2. 2 )=x22
A (2. .3 )=XY22
A(2. 4)=-X2
A(2.. ~)=O.
A(3.. 1)=-Y22
A (.3, 2)=Y22
A (3. 3)=XY22
A(3. 4)=O.
A(3.::J=-Y2
A(4. 1)=X2
A(4.. 2)=X2-
A ( 4 t ;; ) =Y 2
f', (4-.. 4)=-RN
A(4.. S)=C. O:';

A(:5.. 1)=-Y2
A(S.. 2)=Y~
A ( :: , 3) =X 2
A(S.4)=::'.
A ( S .. 5 ) =- R N
C ( 1 ) =- ( X Y 1 2 + X Y .2 1 + Y 2 ~- X2.2 )
C (2) =-XX 12-XY22
C(3)=-YY12+XY~2
C~4)=-XI-Y2
C(S)=X2-Yl
DD=DETE~M (A, t-)

Wi='ITC:: EFFOR MESSAGe: IF ,l;ATidX IS SINGuLAR
I F ( CD. E C. .

: .

00) \jI. R I T E ( 2 J )
DO IS\') 1=1..
DO 120 J=I,
DO 120 K=l.

:::

D(J.,K)=A(J,
00 130 L=l,
D(L. I)=C(L)

C6.LCJLATE (i( 1) THf..O.JGH G(:::) FOf.: RCT'JkN TO MAIN P;:"OG...,.Iv.

G ( I J=DETE~M 'D.. S) /UD

CALCuLATE CHISQ

CHISO=C.
DO 2:,)0 I=l, NPTS
XC 

=- ( 

G ( 1 ) + G ( 2 ) 1 ~x (2 ~ I )- ( 1 . 0:+ ~ ( 3 ) ) ~ y ( 2 ~ I ) +G ( 4 J
Y C= ( 1 .

.:) 

r-G ( 3) ) "" X ( 2 , 1 ) + ( G ( 1 ) -G , 2 ) ) t, Y ( 2, I ) + G ( 5 )
CHISO=CHISQ+( X( I, I I-XC )~::r2+( y (1, I )-YC) ~~2
XC=((X(l, I )+XC)/2. DO)-G(~)/2
yc=' n' (1, ! )+YC)/2. C))-Gt5J/2
IF lNDPT.EU. 4) G(3)=~.



20;)

1 C

X(3. I)=XC':\:(1. 0::;-C?-;'~'G(3) )+YC=I;(l)
Y (3. I J: ( 1. 8 :+ ( 1 . U a-up T ) ~G ( 3) ) =YC

CONTI NUE
FREc=2. 0 O*NPTS-5. 
S 1 Gr",A= 

;:)+ 

0 0"'DSQRT (CHI SQ/FjiEE.)
FORMAT(lx~ t MATRIX OF COE. 15 SING~LARtJ
RE. TUkN
END
FUNCTION OET~RM(AA. NORDE~)
IMPLICIT CaUBLE Pk~CISION (A-h. G-Z)
DIMENSICN ARRAY(5~

~) ,

AA(5,
OETERM= 1. DC

DO 45 J=1. "CkOEf'
VO 45 K=l, NORut:.R
ARRAY(J. K)=AA(J.
DO 50 K=hNOP.OER
IF(ARRAY(K. K)) 41. 21,
DO 23 J=K. NOROEF
IF(ARRAY(K, J)) 31. 23.
CaNT INUE
DETERM:!.. .o\)
GO TO 6)
DO 34 l=K. NCRDER
SAVE=ARRAY(I,
ARRAY(I~ Jl=ARRAY(I .
ARRA'r (.I. K )=SAVE
DE TERM=-DE TERM
DETERM=DETERM-ARRAY (K. 
IF(K-NCRDER) 43~ 5J,
Kl=K+l
DD 46 I=K1, NonDER
~O 46 J=K 1. NGRJ2R
A F(F~ A Y ( I , J ) =A f-:ht. Y ( 1 . .J )- ARK A Y ( I . ;'~ ) '" At.:R':' Y (v.. . J ) / Ar-f., ;:' Y (K . K )

ceNT INUE
RETURN
END


