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THE USE OF THE METHOD OF LEAST SQUARES IN CALIBRATION
by

J. M. Cameron

1. Introduction

When more than one measurement is made on the same quantity, we are
accustomed to taking an average and we have the feeling that the result
is "better" than any single value that might be chosen from the set.
Exactly why the average should be better needs some justification and
the fundamental step toward a general approach to the problem of
measurement was taken by Thomas Simpson in 1755. In showing the
advantage of taking an average of values arising from a number of
probability distributions, "he took the bold step of regarding errors,
not as individual unrelated happenings, but as properties of the
measurement process itself . . . He thus opened the way to a
mathematical theory of measurement based on the mathematical theory
of probability" [3, page 29]. '

The taking of an average is a special .case of the method of least
squares for which the original justification by Lengendre in 1805 did
not involve any probability considerations but was advanced as a con-
venient method for the combination of observations. It was Gauss who
recognized that one could not arrive at a "best" value unless the
probability distribution of the measurement errors were known. In
1798 he showed the optimality of the least squares values when the
underlying distribution is normal and in 1821 showed that the method
of least squares leads to values of the parameters which have minimum
variance among all possible unbiased linear functions* of the observa-
tions regardless of the underlying distribution. It is this property
that gives the method of least squares its position of dominance
among methods of combination of observations.

In this paper the statistical concepts needed for the method of
least squares will be stated as a prelude to the usual modern version
of the Gauss theorem. The formation of the observational equations
and the derivation of the normal equations are illustrated for several
situations arising in calibration. The role of restraints in the
solution of systems which are not of full rank is discussed. The
results are presented in a form designed to facilitate computation.

¥An example of a nonlinear function with smaller variance than the
average (the "best" 1linear estimator) is given by the midrange for
the rectangular distribution. The midrange (average of the largest
and smallest observation) has variance I/EZ(N+1)(N+2)] when based
on n measurements, whereas the average has variance 1/12N. Thus if
N>3, the midrange is to be preferred.



2. The Physical and Statistical Mode].gj_gg.Exgeriment'

In physics, one is familiar with the construction and interpretation
of the physical model of an experiment. One has a substantial body of
theory on which to base such a model and ane need only consider the
determination of length by interferometric measurements to remind
oneself of the various elements involved: a defined unit, the apparatus,
the procedure, the corrections for environmental factors, etc. One
:ea]ization of the experiment leads to values for the quantities of

nterest. '

But one realizes that a repetition of the experiment will lead to

- different values--differences for which the physical model does not
provide corrections. One is thus confronted with the need for a
statistical model to account for the variations encountered in a sequence
of measurements. In building the statistical model, one is first faced
with the issue of what is meant by a repetition of the experiment--many
readings within a few minutes or ab initio determinations a week apart.

The objective is to describe the output of the physical process
not only in terms of the physical quantities involved but also in terms
of the random variation and systematic influences due to environmental,
procedural, or instrumental factors in the experiment.

3. Equation of Expected Values of the Observation

If one measured the same quantity again and again to obtain the
sequence '

yl'yz’o LI 1 yn o o o

then if the process that generates these numbers is "in control," the
long run average or Limiting mean, u, will exist. By "in control" one
means that the values of y behave as random variables from a probability
distribution (for a discussion of this topic, see Eisenhart [1]). This
Timiting mean, u, is usually called the expected value of y designated
by the operator E( ) so that the statement becomes in symbols E(y) = wu.
Because y is regarded as a random variable one can represent it as

Yy=ute

where € is the random component that follows some probability distri-
bution with a 1imiting mean of zero, i.e., E(e) = 0.

The quantity u may involve one or more parameters. Consider the
measurement of the difference in length of all distinct pairings of



four gage blocks, A, B, C, D. Denote the 6 measurements by y1, Y2, . . . ¥6»
" then one may write

E(y;) ='A-B
E(y,) = A<C
E(y;) = A-D
E(y,) = B-C
E(yg) = B-D
E(yg) = C-D

Other representations are useful.

Observation Expected Value: E(y) Matrix Form: X8
" A-B a1 0 o]fa]
2 A -C ’ 1 0 -1 0O B
Y3 A -D 1 0 0 -1 C
Ys B-C 0 1 -1 of|D]
Yg B -D 0o 1 0 -1
Y C-D 0-0 1 -1

Consider a sequence of measurements of the same quantity in the
presegce of a linear drift of A per observation. The expected values
are thus:

Observation Matrix Form: X8

E(.Y]) = 1 0 ] M
E(yy) =u+a 11 1y
E(y3) =y + 27 1 2

Ely,) =w+ (n-D)a [ 1 (n-1)



There is an alternative representation that measures the drift from
the central point of the experiment so that the drift is represented
by . . . -34, =20, -4, O, A, 24, 3A . . . for an odd number of obser-
vations and by . . . =54, -3, -A, A, 34, 5A . . . for an even number
of observations. 2 T 27T 7T

If, as for example with some gage blocks, the value changes approxi-
mately linearly with time; then one can represent the observation as
follows: o

Expectéd Value E(y) Matrix Form: X8
[~ -
E(y]) = a + Bx, 1 X a
E(yz) = a + BX, 1 Xq 8
E(yn) =a+ Bx, 1  Xp

The sequence of measurements for the intercomparison of 4 gage
blocks is as follows:

Observation Expected Value: E(y) _ Matrix Form: X8
2 S. - S.. - 74/2 1 -1 0 o0 -7}[s. ]
Yo Y -S. -54/2 -1 0 0 1 -5 S..
Y3 X - Y -34/2 o o 1 -1 -3 X |
Y S..-X =~ 4AJ2 0 1T -1 0 -1 Y
Y S..- Y + A2 0 1 0 -1 1|2
Vg Y -S. 4352 -1 0 0 1 3
¥ S. - X +54/2 1 0-1 0 5|
Yg X - S..+ 702 0 -1 1 0 7

(Note that for simplicity, A/2 is regarded as the parameter.)

For a detailed analysis of this and related experimental arrangements,
see J. M, Cameron and G. E. Hailes [1]. The notation is that used in
[1] where S. and S.. refer to reference standards and X and Y are the
objects being calibrated.



If, as often occurs in the intercomparison of electrical standards,
the comparator has a left-right polarity effect, this can be represented
as an additive effect, a, as shown below far the intercomparison of 5
standards.

Observation  Expected Value: E(y) Matrix Form: X8
" A-B ta [1 -1 0 0o o 1][A]
Yy B-C +a 0 1 -1 0 0 1(}|8B
Y3 C-0D +a 0 0 1 -1 0 1}]¢C
Yq D-E+a 0 0 0 1 -1 1]]D
Y -A +E+a |1 0 0 0 1 1}]E
Yg -A +D +a -1 0 0 -1 01 _a_
Yy B -D +a 0o 1 0 -1 01
Yg -8 +E+a |0 -1 0 0 1 1
Yq C -E+a o 0 1 0 -1 1
Y10 A -¢C ta |1 01 0 01

4. Statistical Independence

The sequence of differences from a zero measurement, Yos
A: y].yoi yz‘yO: y3-y0'o . "yﬂ.'yoh « .

are clearly dependent because an error in Yo will be common to all.
Similarly, the successive differences

B: You¥1r ¥37Yose - YY1 ¢ -

will be correlated in pairs because an error in Yn affects both the
(n-1)st and n-th difference.



‘ If it is assumed in both cases that each yi has the form uy = uj + g4
where E(eq) = 0, Var (ef) = o® and cov (e4s€3) = 0, then the variance of
the differences for sequence A is, as one would expect,

v(yi'yo) = 202
and the covariance of two differences is
cov (y5-Yg» ¥57¥g) = Ellej-gq)(e-gg)] = Eleg) = o
because terms of the form E(ei’ﬁj)= 0

For sequence B the variance is also V(yj-yj-1) = 202 and the
covariance terms are

Cov(yi‘yi_]s .Yj‘yj_]) = E[(ei'ai_])(ej'ej_])] ={0 if |i-j| 22
~g2 if |i-j| =1

;hese variance-covariance relationships can be represented in matrix
orm:

Sequence A: V={211...1]o® SequenceB: V=[2-1 00...0]c?
121...1 -1 2-10...0
1171...2 0 000...2
N J _ i

A1l are familiar with the phenomenon of much closer agreement among
measurements taken immediately after each other when compared to a sequence
of values taken days or weeks apart. The simplest statistical model for
this case is that each day has its own limiting mean, uj = u + 8§, where
E(83) = 0, Var($i) = of, Cov(si,sj) = 0,and the successzve values on
each day have the form

. |
= Hy +e€,.5ut 61 + ¥

Yij ij j

where E(eij) = 0, Var(eij) = od, Cov(e1j, exe) = 0, and Cov(ejj, 8k) = 0.



These three examples serve to illustrate the point that the physical
conduct of the experiment is the essential element in dictating the
appropriate statistical analysis. In all three cases the correlation among
the variables vitiates the usual formula: standard deviation of the mean =
(1//n) standard deviation. (See Appendix, Section 1(b).)

It is in the physical conduct of the experiment that one has to build
in the independence of the measurements. For Sequence A one could remeasure
the zero setting each time or in Sequence B, make an independent duplicate
measurement. Ordinarily this is too much of an expense to pay to achieve
uncorrelated variables just for a simpler analysis.

Statistical independence is to be desired in the sense that if
the successive measurements are highly correlated, then many measure-
ments are only slightly better than a single one. The really important
issue is that the proper statistical model be used so that the results
are valid.

5. Normal Equations For the Method of Least Squares (independent
random variables)

When there are more observations than parameters, the "best" (in
the sense of minimum variance) linear unbiased estimates for the
parameters are given by the so-called least squares estimators. For
example, assume one has the problem of deriving values for A, B, C,
and D from the following measurements. '

Measurements =~ Expected Value: E(y) Matrix Form: XB

1 0 0 o] [a]

Y3 A A
Yo B 01 00 B
Y3 C 0 010 C
Y D 0 0 01 D
Yg A+B 1 1} 0 0 -
Yg B+ C 0110

Yy C+0D 0 0 11

Yg : D+ A _1 0 o0 IJ



~

An obvious estimator, A, is the average of the three values,

Expected Value

2 A
yB'Y4 (A+D)'D

so that, assuming independent measurements with variance, o2,
A = %(y] + Yg = Yo + g - Y4)
~ 5 2
Var(A) = 3

The least squares estimator is obtained by forming the normal
equations (see Appendix, Section 2).

3A+ B+ +D=yl+y5+y_8

A+3B+ C =_y2+y6+y5
B<i-3(:+D=_y3-!-y7-!-‘y6
A + C +3D = Yatygtyy

The solution gives the following estimators for the parameters.
R=(Ty; - 3y, + 2y3 - 3y + Y5 - ¥g - ¥y * 8yg)/15

B

(-3y] + 7y2 - 3y3 + 2y4 + 4y5 + 4y6 -y - y8)/]5

'C (Zy] - 3y2 + 7y3 - 3y4 - ys + 4y6 + 4y7 - ye)/ls
b= (‘3y] + 2y2 - 3Y3 + 7Y4 - Y5 - yﬁ + 4y7 + 4y8)/]5
Using formula (1.11) of Appendix, gives
Var(R) = 105027225 = 2102/45 = 70%/15
which can be compared to the variance of A which was 2502/45. The Gauss

theorem on least squares guarantees that no other linear unbiased
estimator will have smaller variance.



In matrix form one has

(xxg=[3101][a] = [10001001] [y,
1310]|8 01001100/ |y,
0131]]c 00100110
1013||p] |ooo010011]

B=ye| 7-3 2-3 10001001 y
-3 7-3 2/ (01001100

2-3 7-3] 00100110
-3 2-3 7/ (00010011

——

-3 4-1-1 4|y

josds

"
pr= B
-~J

(]
(98]
N

-3 7-3 2 4 4-1-1
2-3 7-3-1 4 4 -
-3 2-3 7-1-1 4 4

-t

When only differences among a group of objects (such as gage blocks,
voltage cells, etc.) are measured the normal equation will not be of
full rank so that a unique solution will not exist. For the design
involving differences between all distinct pairings of objects the
normal equations are, for the case of 4 objects discussed in Section 3,

3A- B- C- D
-A+38 - C- D

9ty ty3® 9

Yyt t¥s T 9
A- B+3C- D

(]

‘yZ =Yy + y6 =

1
L
w

-A- B- C+3D

‘Y3 - y5 - yG = Q4



Or in matrix form:
x6=[1110
-1 0 01
0-1 0-1
LO 0-1 0

0
1
0 1|1
-1 -1_

7
0

0
0

which can be seen not to be of full

‘equations is zero.

B:

EERER
-1 34141
-1 -1 3 -1
S1-1-1 03

g =1

e

1
0
0 -1
00

-1

B

1 000
0110
0-1 01
-1 0-1-1

rank because the sum of the four

One needs a baseline to which the differences can be referred--a

restraint to bring the system of equations up to full rank.

If one of

the objects were designated as the standard, or if a number (or all)
of them were regarded as a reference group whose value was known, values

for the items could

If the restraint A =

be obtained.

(using the methods of Appendix, Section 3)

/ﬂ 3A- B- C-
-A + 3B c
-A - + 3C

¢

B

] i

\ A

i

-A - B +

The

K

> > O W

0

K+(‘2y]‘yZ‘Y3+Y4+y5)/4

D +2A= 94
D
D
3D

8
X

solqtibn is given by

K*('y]‘zyZ'Y3'Y4+y6)/4
K+('y]‘y2'ZY3'35°y6)/4

2
7

10

(00004
021148
01214
01124
44440

-1
-1 -1

0 -1

111
3-1-1
3 -1
3
1000

INER

0011

0 0-1
0 000 O0 01

-

0-1 0

0 -1

is ‘invoked, the normal equations become

>y

0

0 0
10
-1 0




>> W)
]
o

(00000 04
2-1-111 04
1-2-1-10 14
S -1-2 0-1-14

0 00O0O0TO0O

*

The variances of the values are V(R) = 0; V(ﬁ) = V(E) = V(B) = g?/2.

If the restraint A + B + C + D = Ky is invoked, the normal equations

become
3A- B- C- 0D
-A+38- C- D
-A- B+3C- D
-A- B- C+ 3D
A+ B+ C+ D

and the solution is given

A= (yyty tyg¥k, ) /8
B = (=y1tyatystk,)/4
C = (-ypmyg*ygHk) )/
D= (-y3-y5-yg*K,)/4
A =0

The variances of the values are V(A) = V(B)

+2=q (3110 18] =] xy
+r=aq, <1 3-1-11 {X} K
+1=q, -1 3417
+1=q, <11 3
= Ky 1111 0]
N by - . . _
{é] = ll3-1-1-4[ 11100 0 offy
\ 1 3-1-14ff -1 00 1 1 0 of|K
-1-1 3-14f{l0o-10-1 01 0] °
-1-1 34f[l0o 0-1 0-1-1 0
4 4 440{/|{o0000 01
T[4 44000 a][y
400440 4]k
0-4 0-4 0 4 4
0 0-4 0-4-4 4
0000000
B) = V(C) = V(D) = 30%/16.

11



Although it is a simple matter to change the reference point for
the parameters (1.e., change the restraint) after one solution has been
found, the corresponding change of variances for the parameter values
should not be ignored. These variances are given by the diagonal terms
of the inverse of the matrix of normal equation, the inverse being
indicated by double brackets in these examples. The difference in
variance for 8 in the last example, arises from the fact that in the
first case one is concerned only with the difference between A (the
standard) and B, whereas in the second case it is the difference between
B and the average of the others that is involved.

For completeness, the matrices of normal equations and their
inverses for the examples of Section 3 are shown below.

Linear Drift

x=[10 | X'X =| n n(n-1)/2
11 n(n-1)/2 n(n-1)(2n-1)/6
1 2 '
1 (n-1)
(x'X)7 = orlas La(n-1)(20-1)/6  -n(n-1)/2
' -n(n-1)/2 n

y a linear function of x

X = P] ’ x1- X'x.f -n x (X'X)-] = n—D('z-I—(W Ix? -Ix
1 x, Ix Ix? -IX n
1 Xn

12



Gage block design
0 0

X =

x'x 8|V = =

B' 0

168

0

-35

0
168

Intercomparison of 5 standards

x=[1-100 0
0 1-1
0 0

0 0

0 0

0-1 0
0 0 1

1 0-1
L.

0 -1
0 0

1
1

—y

13

X'X B
B' O

-7 7
7 -7
91 21
21 91
0 0
168 168

X'X B
B' O

0
0
0
0
2
0

=l 4-1-1-2 0

-1 4-2-1 0
1-2 4-1 0
2-1-1 4 0
0 0 0 0168

11T 000

168
168
168
168
.
0-.

(Sum of all used as restraint)

-1 0
-1 0
-1 0
0
0




XX B|T =g 4-1-1-11
B' 0 A1 41 -1 -1

ogr v W »n

0
0
-1-1 4-1-1 0
-1-1-1 4-1 0
1-1-1-1 4 0 5
0 0 00 065/20

5 5555 00

6, Standard Deviation

By substituting the computed values for the parameters into the
equations of expected values for the observation, one has a predicted
value to compare to the actual observation. The difference, d, between
the observed and predicted value is called the deviation and is used
to determine an estimate, s, of the standard deviation, o, of the
process

where n is the number of measurements, k is the number of parameters and
m is the number of restraints.

Ordinarily one has available a sequence of values of the standard
deviation say sy, S2, S3» . . . » Sp based on vy, v, v3, . . . , vy degrees
of freedom. One forms the estimate of o by combining tgese in quadrature

A o 2 4+ v,52 + 2
5= ¢/;’151 VoSa t - - - * VnSy
Vq +V, +, , . ¢
1 2 n

with degrees of freedom N = Iv. In assigning a standard deviation to
the parameters or linear combinations of them, the value o is used rather
than the value of s from a single experiment.

The variance of the sums of two parameter values is given by adding
the corresponding diagonal terms (variances) in the inverse of the
matrix of normal equations and the appropriate off diagonal terms
(covariances) and multiplying by o2 For the case of the intercomparison
of 5 standards given at the end of Section 5:

14



- 5
s.d. (A+B) = /o; + o2+ 20pg = -',?5-—/{4+4+2(-1) - 9{_5.

For the variance of the difference, the covariance terms enter negatively
so that for the same example

~ A U
s.d.(A-B) = /of\ + 02-20,, = :;‘.—rs-"/m«;-z(-]) = 9.’?2

B "AB

For other linear combinations, formula 1.10-M of the Appendix would be
‘used. '

For the 1inear function example, the predicted value of y for
Xo 1S yo= a + Bx, which has a variance of .
2 _ 2 2
n xo] C]] C]Z 1 o (c]] + XOC22 + zxoclz)O'

c C X

12 "22 o

where the terms Cy1s Cyos C,, are the elements of (X'X)~! given in
Section 5 for the éase gf y gs a linear function of x.

7. Correlated Measurements

In the previous section it was assumed that the observations were
uncorrelated, i.e., that V(yi) = o2, cov(yj, ¥j) = 0 or in matrix form
V = Var(y) = o®I where I is the identity matrixX. Section 4 of the
Appendix discusses the general case where one knows the matrix, V, of
variances and covariances for the observations.

Quite often a transformation of variables can be achieved to obtain

variables that are uncorrelated. A simple example is provided by the
case of cummulative errors, i.e., in the case where

NEH ey
Y=t et e
Y3 T H3t ey te, te

The variance covariance matrix of the y's assuming E(ej) = 0, Var(e) = o2
cov(siej) = 0 is given by

15



Vo2 |1 1 1..1
12 2 2
1 2 3 3
12 3..n
L. -
If one transforms to variables xj where
S T “u e

Xo =¥y =¥ =Hp-WtE
X3 =Y¥3 ¥, =uz-Hpt ey

Xn * Yn = Yn-1 *Hn " Ppa1 T E

The expected values and variances become

E) =[] vix) =[ o% 0
Uz'U] 0 o?
| ¥ -1 | 00
In matrix form X = Ty where T=| 1 0 0
11 0
0 -1 1
0 0 0

16




and if one computes Var(Ty) = TVT', one gets

Var(Ty)=' 111, ..

1.0 0..

-1 1
0 -1

0
1

122
123

17
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3

0?1
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(2)

(3)

(4)

(5)
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APPENDIX: FORMULAS FROM STATISTICS
1. Background and Notation

(a) Expected Value

The expected value, u, of a random variable, y, will be written

E(y) = u
The mean u may represent a linear function of some basic
parameters 81, B2, . . . Bk with known coefficients

X1s X25 « « «sXk

E(y) = u=x1B] + X8 + . . . + X8

The expected value of n observed values yi, y2, . . + » Y, can
then be written

E(y1) = X798y + XypBy + « o« + X;, B, (1.1)

E(Yy) = X518y + Xp0B, + o o L ¥ Xp By

Elyp) = XnpBy * XpoBp *+ - - o+ X8y

This may be written in matrix notation as

(E(.y])- = Px-l'l x]z s o & X~Ik_1 -B"q (1.]‘M)
B | %1 22 - - - X | | B2
..Bk..
E('yn) 1 *n2 v - Xnk

or as E(y) = X8

wﬁere the vectors y and B and the matrix, X, are easily
identified.

19



(b) variance, Covariance

The variance, o%. of a random variable, Yy is defined as
0% = E{(.Y1 - U.')z} = E(y12) - 2U1£(.Y1) + U% = E(.Y%) - u% ' (1.2)
and the covariance %3 of the variables ¥4 and yj by
a'lj = E{('yi - ”1)(3'.1 - Uj)} = E(yiyj) - uiuj (]~3)
The variance of cy where c is some constant is
var (cy) = E{{cy - cu)?} = c%? (1.4)

The variance of a sum of two variables

Var(y, +y,) = E{ly; + ¥, = (4 + 1)1} = ECL(yy = wy) * (¥, = Wp)1%)

E(.Y] - U1)2 + E(.Yz - uz)’ + ZE{(.Y] - U])(.Yzi - uz)}

o% + o% + 20y, (1.5)

which we may write as

o} + 05+ 20, = [1 1] [o} + o,z] = 01 1|6} oy [1] (1.5-M)

2 2
9y * 93 012 93 | U

For independent random variables °ij = 0 and
Var(Zyi) = 20% (1.6)
EXAMPLE:
Var(ay, + by, + cy;) = E{l(ay; - auy) + (by, - buy) + (cy; - cu3)1?}

= azoz + b20.2

2.2

which may be written as
[abec) o% 912 91312 (1.7-M)

2
012 93 9p3||P

2
O13 923 93 4 L€

20



(c) Linear Function of Random Variables

A linear function

L=ay, tay,*+... ta vy, (1.8)

has expected value

E(L) = a,E(y;) + a,E(y,) +. . . +aEly) (1.9)

or in matrix notation

E(L) =(a]a2 .. an) E(y]) = a'y (1.9-M)
E(y,)
E(y,)

The variance is given, by analogy with (1.7) by

V(L) = (313 - - -2, r&% Tip + « » Oqp a]' - (1.10-M)

2 .
O'Z-l 0'2 ¢ o . 0’2n az

which reduces to the usual formula

- 2.2
V(Zaiyi) = Iajo] (1.11)
if oij = 0.
~ For two linear functions L] and L2 the covariance term is
given by o
E{[a] (.Y]-u]) + .00 + an(yn-un)][b] (.V]'u]) oo + bn(yn-un)]}

= 2 - )2 -u_)?
+ (a]bz + azb])E(y]‘U])(yz'UZ) + (a]b3 + a3b])E(y1‘U])(Y3'U3)

+ (&2b3+33b2)E(.Y2"UZ)(y3'1-|3) + ., .
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This reduces to the usual formulas:

Ifag,. =0 then Cov (Ly, L,) = La;b,0?
iJ ] 2 711 (].]2)

= = 2
Ifo; =0 then Cov (Ll' Lz) o?Za;b,

For the case of L] = a0 + 3,5, f a3¥3 and LZ = b]yl + bzy2 + b3y3, the
covariance can be written: ‘

- - - ar -
2 - 2

(2, 3, a5) | bya] + byoyy + boys | = (a) @ 33) 0] 05 3] By

) . (1.12-M)

byos *+ byoyy * byoy3 912 92 923 |P2

) ,
L93°3 * byoy3 + Dydp3

giving the general formula for the variance and covariance of two linear
functions

913 923 %3 QPs

- -

- - r -
ay ay . . .3 1 0] Opp .. -0l | Y b, (1.13-M)
' 2
b] b2 . e e bn 0yp 05 + + - Tpp a, b2
2
_?1n Opp * * °n__ _an bn |

or in general for p such function, i.e., for a pxn matrix A
var(AY) = AVA’ (1.14-M)

(d) Quadratic Forms in Random Variables

We have from (1.2)
E(y?) = o® + 12 (1.15)

We wish to extend this to include the case of a more general
quadratic expression in the y's, consider for example

E[{ay, *+ by,)?] = Ea’y} + Eb%y, + 2abE(y;¥,)

= 22~2 4 22,2 2.2 4+ Kh2,,2
= a%03 + a%yy + b S +b M5 + Zabu]u2 + Zabc:]2
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which may be displayed as a matrix product as follows:

ly, y,1 [a® ab} ]y = [uy u,] a2 ab][u |+ [a bIfo? o a
172 1 1 ¥ 1 1 %2
ab b? Y, ab b? oy y2 c% b

This example illustrates the general formula:
E[(a‘y] + ..+ anyn)zl = E [y] Yo » - yn] a% 23, . . 23

2
a,ay a5 . . At Y,

- [ul ”n] Pa% * a]J Rﬁ * [a] an] ro% 912 * * %} |1
a a? u 0y, O g2 a

i In n_ i n i In “2n n_ ) n

or
E{y'Ay} = u'Au + a'Va (1.16-M)
where A = ra% 212, 1 andv = FE% 912
2 2
a]az 32 o s @ 012 02 R
b . auad g
The last term can be replaced by the trace of AV.so that we have
E(Y'AY) = p'Au + Trace(AV) (1.17-M)

For an excellent treatment of these statistical topics one should
consult Zelen B].
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2. The Gauss Theorem on Least Squares (Independent, Equal Variance,
Full Rank)

Let the n observations Yp Yoo o oYy have expected values - ~
E(yp) = Xp1By * Xp0By « o X5 By

(2.1)

E(J’n) = xnlBI * anBZ tore xnkBk

and be statistically independent with common variance, 2. These two
conditions can be expressed in matrix form as follows:

EW) =y = Xy % X [B] = %8

Y2 X21 %22 X2k

. Bk
(2. ] -M)
In xn] Xn2 Xnk
vy) =l o® o ...o0|=o0%
0o o2 )
o o c?

The Gauss theorem states that the minimum variance unbiased linear
estimator of any linear function, L, of the parameters, B] 82 " e Bk’
say '

L= a181 + 3282 + ... akBk-

is given by substituting the values of Bi which minimize
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Q= Z[yi - (Xi]B] + .. +'XikBk)]z

considered as a function of the Bi’ These values, B, B .
the solutions to the k equations, called the noamal lqua%&onb.

2 ~ . ~ ~ =
Ix{181 * IXyqXyoBp * o o IXgyXg By = IXgq¥;

”~ 2A ~ =
IXgo%318) ¥ IXjpBp * . o b XXy By = IXo¥y

~ A 2/\ -
IXgXi1By ¥ IxgXioBp * - o P IXG 8 XY
or in matrix form
(X'X)g = X'y
The solution to these equations can be written as

é = (ch)‘lxay

(2.2)

. Bk are

(2.3)

(2.3-M)

(2.4-M)

because X was assumed to be of rank k. The matrix (X'X)~! is the
{tvense of the matnix of nonmal equations and plays an important role

in least squares analysis. Let its eiements be denoted by c;

iyy=1 - [, 1

J

CZ] C22 o o c2k

%1 k2 0 Skk

The standard deviation, o, is estimated from the deviations
where

di = vy = (xgBy * X528 + o o+ X8

25
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(2.5-M)

ds,

(2.6)



by the quantity, s,
_ , Ed?
s = /ﬁ-_-E' (2.7)

and is sald to have n-k degrees of greedom.

The standard deviation of the values for the coefficients éi are
given by

s.d.(ﬁi) = /ey (2.8)

~

???]58;)? linear function L = a]B] + a282 ‘. e aksk is [see equation

- - q\1/2 . -
s.d.(L) = c([a] cee ] ¢y - - - Syl 9 (2.9-M)
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3. The Gauss Theorem on Least Squares (Independent, Equal Variance,
With Restraints) . ‘

If the parameters, Bi’ are required to satisfy the m linear equations

wm = bmlsl * bm282 R bkak = Km
or in matrix form
B's = K . (3.1-M)

then using the method of Lagrangian multipliers, it turns out that the
minimum variance unbiased linear estimators are given by minimizing

F=Q+ 2y (b - K+ 2,0y - Ky) +. L 4 (b - K) (3.2)

considered as a function of the B's and A's. (2\; is chosen rather
than just Ay so that in setting 3F/38; = 0, a common factor of 2 can be
divided out.)

This leads to the normal equations

2

2
ngxlel +, .-+Zxk6k + b]kA] + .. 04 bmkkm Zxky (3.3)

biBr+ . o+ BBy =K

b

mBrt . o+ BBy =K
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or in matrix form

x'x B[ [g X'y (3.3-M)
R
and the solution is given by
"x'x B [x'y (3.4-M)
L L]

f]

If X'X was already of full rank, then B must be of rank m for the
inverse to exist. If X'X is of rank (k-m) and B' consists of m rows,
then the indicated inverse will exist if B is orthogonal to X'X, i.e.
that (X'X)B = 0,and B is of rank m. Also if B is a combination of
such an orthogonal set of restraints, denoted by H, and the vectors of
X'X, then the inverse exists if the mxm matrix B'H is of rank m, i.e.,
the determinant |B'H| # 0. e

EXAMPLE: If the differences A-B, B-C, C-D, D-E, E-A are measdred, then

the 5 measurements Y1s¥2: Y% ¥4, ¥5 (assumed independent with equal
variance) can be represented as

E(y) =[ A-B T=[1-1 0 0 0]

B-C ~-10 1-1 0 O

C-D 00 1T-10

D-E 0 0 0 1-1

A Bl 00 0

B I 5N -

2

n

=XB

"'m o o ® >

] rank of X'X is 4

xx =[ 2-1 0 0-1
1 2-100
0-1 2-1 0
0 0-1 2-1

-1 0 0-1 2
.

Hl

>
i

The restraint A+B+C+D+E = [1 1 1 1 1]

m o O @
[ e B g NS © = i -
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is orthogonal to X'X because H'(X'X) = (11 111) (x'X) = {0000 0]
If the given restraint were A + B = K,, then B' = (1 10 0 0) and |B'H
2 # 0 so that the restraint is sufficient to produce a solution.

The standard deviation estimate is changed from that given-in
formula (2.7) to become

2 .
s = ¢ﬁ§%ﬁi degrees of freedom = (n-k+m) (3.5)

where m is the number of restraints.

Formulas (2.8) and (2.9) still apply for the standard deviation of the
parameter values and of linear combinations of them.
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4, The Gauss Theorem on Least Squares (General Case)

If the observed values y; y2 . . . ¥p have variances o, and
covariances 45 SO that

Var (y) = g% Op« + % | = v (4.1-M)
' 2
%2 % %2n
2
%n %n %n

and the parameters are subject to the m restraints

b”B] o0t b8 = K (4.2)

*

bpiBy t - - - bkak Km
or in matrix form
B'B =K (4.2-M)
Then the least squares estimators for 8 are given by

] xv"x Bl 7t {xvly
N

>> U

K

where as before 3' = [ i ] is a vector of Lagrangian multi-
pliers entering into th e mi n1m1zation process.

For a discussion of this general case, the reader is referred to the
Goldman-Zelen article [4].
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